Dilation of Newton Polytope and p-adic Estimate

被引:1
|
作者
Wei Cao
机构
[1] Shanghai Jiaotong University,Department of Mathematics
来源
关键词
Finite field; Newton polytope; Lattice point; -adic estimate;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(X) be a polynomial in n variables over the finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{q}$\end{document}. Its Newton polytope Δ(f) is the convex closure in ℝn of the origin and the exponent vectors (viewed as points in ℝn) of monomials in f(X). The minimal dilation of Δ(f) such that it contains at least one lattice point of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}_{>0}^{n}$\end{document} plays a vital pole in the p-adic estimate of the number of zeros of f(X) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{q}$\end{document}. Using this fact, we obtain several tight and computational bounds for the dilation which unify and improve a number of previous results in this direction.
引用
收藏
页码:522 / 528
页数:6
相关论文
共 50 条