Finite field;
Newton polytope;
Lattice point;
-adic estimate;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let f(X) be a polynomial in n variables over the finite field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{F}_{q}$\end{document}. Its Newton polytope Δ(f) is the convex closure in ℝn of the origin and the exponent vectors (viewed as points in ℝn) of monomials in f(X). The minimal dilation of Δ(f) such that it contains at least one lattice point of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{Z}_{>0}^{n}$\end{document} plays a vital pole in the p-adic estimate of the number of zeros of f(X) in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{F}_{q}$\end{document}. Using this fact, we obtain several tight and computational bounds for the dilation which unify and improve a number of previous results in this direction.
机构:
Chanakya Univ Global Campus, Sch Math & Nat Sci, Haraluru Village 562110, Karnataka, IndiaChanakya Univ Global Campus, Sch Math & Nat Sci, Haraluru Village 562110, Karnataka, India