Action potential and weak KAM solutions

被引:0
|
作者
Gonzalo Contreras
机构
[1] CIMAT,
[2] P.O.Box 402,undefined
[3] 36.000 Guanajuato,undefined
[4] GTO. México (fax:+52.473.257-49; e-mail: gonzalo@cimat.mx),undefined
关键词
Static Class; Compact Manifold; Riemannian Geometry; Busemann Function; Peierls Barrier;
D O I
暂无
中图分类号
学科分类号
摘要
For convex superlinear lagrangians on a compact manifold M we characterize the Peierls barrier and the weak KAM solutions of the Hamilton-Jacobi equation, as defined by A. Fathi [9], in terms of their values at each static class and the action potential defined by R. Ma né [14]. When the manifold M is non-compact, we construct weak KAM solutions similarly to Busemann functions in riemannian geometry. We construct a compactification of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M/_{d_c}$\end{document} by extending the Aubry set using these Busemann weak KAM solutions and characterize the set of weak KAM solutions using this extended Aubry set.
引用
收藏
页码:427 / 458
页数:31
相关论文
共 50 条