Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis

被引:0
|
作者
Xiao Xiao
Weiwei Li
Dingchao Rong
Zhenchao Xu
Zhen Zhang
Hongru Ye
Liqiong Xie
Yunqi Wu
Yilu Zhang
Xiyang Wang
机构
[1] The Xiangya Hospital of Central-South University,Department of Spine Surgery
[2] Hunan Engineering Laboratory of Advanced Artificial Osteo-materials,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Spinal cord injury (SCI) is a salient traumatic disease that often leads to permanent disability, and motor and sensory impairments. Human umbilical cord mesenchymal stem cells (HucMSCs) have a wide application prospect in the treatment of SCI. This study explored the repair effect of HucMSCs-derived extracellular vesicles (HucMSCs-EVs) on SCI. HucMSCs and HucMSCs-EVs were cultured and identified. The rat model of SCI was established, and SCI rats were treated with HucMSCs-EVs. The motor function of SCI rats and morphology of spinal cord tissues were evaluated. Levels of NeuN, GFAP, and NF200 in spinal cord tissues were detected and cell apoptosis was measured. SCI rats were treated with EVs extracted from miR-29b-3p inhibitor-transfected HucMSCs. The downstream gene and pathway of miR-29b-3p were examined. HucMSCs-EVs-treated rats showed obvious motor function recovery and reduced necrosis, nuclear pyknosis, and cavity. HucMSCs-EVs alleviated spinal cord neuronal injury. miR-29b-3p was poorly expressed in SCI tissues, but highly expressed in EVs and SCI rats treated with EVs. miR-29b-3p targeted PTEN. Inhibition of miR-29b-3p or overexpression of PTEN reversed the repair effect of EVs on SCI. EVs activated the AKT/mTOR pathway via the miR-29b-3p/PTEN. In conclusion, HucMSCs-EVs reduced pathological changes, improved motor function, and promoted nerve function repair in SCI rats via the miR-29b-3p/PTEN/Akt/mTOR axis.
引用
收藏
相关论文
共 50 条
  • [1] Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis
    Xiao, Xiao
    Li, Weiwei
    Rong, Dingchao
    Xu, Zhenchao
    Zhang, Zhen
    Ye, Hongru
    Xie, Liqiong
    Wu, Yunqi
    Zhang, Yilu
    Wang, Xiyang
    [J]. CELL DEATH DISCOVERY, 2021, 7 (01)
  • [2] Extracellular vesicles from human umbilical cord mesenchymal stem cells reduce lipopolysaccharide-induced spinal cord injury neuronal apoptosis by mediating miR-29b-3p/PTEN
    Xiao, Xiao
    Li, Weiwei
    Xu, Zhenchao
    Sun, Zhicheng
    Ye, Hongru
    Wu, Yunqi
    Zhang, Yilu
    Xie, Liqiong
    Jiang, Dingyu
    Jia, Runze
    Wang, Xiyang
    [J]. CONNECTIVE TISSUE RESEARCH, 2022, 63 (06) : 634 - 649
  • [3] Human Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles for Rat Jawbone Regeneration in Periapical Periodontitis
    Gao, Jiahui
    Zhu, Dongao
    Fan, Yue
    Liu, Honghong
    Shen, Zuojun
    [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2024, 10 (09): : 5784 - 5795
  • [4] Bone Marrow Mesenchymal Stem Cells-Derived Extracellular Vesicle miR-208a-3p Alleviating Spinal Cord Injury via Regulating the Biological Function of Spinal Cord Neurons
    Yang, Jianwei
    Yao, Yanhua
    [J]. DNA AND CELL BIOLOGY, 2024, 43 (09) : 463 - 473
  • [5] Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury
    Zhai, Xiao
    Chen, Kai
    Yang, Huan
    Li, Bo
    Zhou, Tianjunke
    Wang, Haojue
    Zhou, Huipeng
    Chen, Shaofeng
    Zhou, Xiaoyi
    Wei, Xiaozhao
    Bai, Yushu
    Li, Ming
    [J]. JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)
  • [6] Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury
    Xiao Zhai
    Kai Chen
    Huan Yang
    Bo Li
    Tianjunke Zhou
    Haojue Wang
    Huipeng Zhou
    Shaofeng Chen
    Xiaoyi Zhou
    Xiaozhao Wei
    Yushu Bai
    Ming Li
    [J]. Journal of Nanobiotechnology, 19
  • [7] Mesenchymal stromal cells-derived extracellular vesicles alleviate systemic sclerosis via miR-29a-3p
    Rozier, Pauline
    Maumus, Marie
    Maria, Alexandre Thibault Jacques
    Toupet, Karine
    Lai-Kee-Him, Josephine
    Jorgensen, Christian
    Guilpain, Philippe
    Noel, Daniele
    [J]. JOURNAL OF AUTOIMMUNITY, 2021, 121
  • [8] Effects of the Insulted Neuronal Cells-Derived Extracellular Vesicles on the Survival of Umbilical Cord-Derived Mesenchymal Stem Cells following Cerebral Ischemia/Reperfusion Injury
    Huang, Yan
    Liu, Zuo
    Tan, Fengbo
    Hu, Zhiping
    Lu, Ming
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020, 2020 (2020)
  • [9] HUMAN UMBILICAL CORD PERIVASCULAR CELLS-DERIVED EXTRACELLULAR VESICLES IMPROVE CARDIAC REPAIR AND PROMOTE CARDIOSPHERE FORMATION FOLLOWING CANNABISINDUCED INJURY
    Ho, M.
    Ho, M. S.
    Librach, C.
    [J]. CYTOTHERAPY, 2023, 25 (06) : S110 - S111
  • [10] Repair effect of human umbilical cord mesenchymal stem cell-derived small extracellular vesicles on ovarian injury induced by cisplatin
    Xu, Bianling
    Guo, Wei
    He, Xiaojing
    Fu, Zijie
    Chen, Hongxu
    Li, Jun
    Ma, Qingya
    An, Shengjun
    Li, Xiaodong
    [J]. ENVIRONMENTAL TOXICOLOGY, 2024, 39 (08) : 4184 - 4195