Sur les égalités du miroir et certaines formes faibles de la conjecture de Greenberg

被引:0
|
作者
Badino R. [1 ]
Quang Do T.N. [1 ]
机构
[1] Univ. de Franche-Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 25030 Besançon Cedex
关键词
Field Theory; Number Theory; Algebraic Geometry; Weak Form; Topological Group;
D O I
10.1007/s00229-004-0531-4
中图分类号
学科分类号
摘要
Let p be an odd prime. For any C M number field K containing a primitive pth-root of unity, class field theory and Kummer theory put together yield the well known reflection inequality λ+ ≤ λ- between the "plus" and "minus" parts of the λ-invariant of K. Greenberg's conjecture asserts that λ+ is always trivial. We study here a weak form of this conjecture, namely λ+=λ- if and only if λ+=λ-=0. © Springer-Verlag 2005.
引用
收藏
页码:323 / 340
页数:17
相关论文
共 50 条