Smoothed particle hydrodynamics modelling of multiphase flows: an overview

被引:0
|
作者
Jacek Pozorski
Michał Olejnik
机构
[1] Polish Academy of Sciences,Institute of Fluid
来源
Acta Mechanica | 2024年 / 235卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Smoothed particle hydrodynamics (SPH) is a meshless, particle-based approach that has been increasingly applied for modelling of various fluid-flow phenomena. Concerning multiphase flow computations, an advantage of the Lagrangian SPH over Eulerian approaches is that the advection step is straightforward. Consequently, the interphasial surface can be explicitly determined from the positions of particles representing different phases; therefore, there is no need for the interface reconstruction step. In this review paper, we briefly recall the basics of the SPH approach, and in particular the physical modelling and numerical implementation issues. We also mention the weaknesses of the approach and some remedies to overcome them. Then, we demonstrate the applicability of SPH to selected interfacial flow cases, including the liquid column break-up, gas–liquid flow regimes in a channel capturing the transitions between them and the wetting phenomena. Concerning the two-fluid modelling, it is illustrated with sediment transport in the presence of surface waves. Various other applications are briefly recalled from the rich and growing literature on the subject, followed by a tentative list of challenges in multiphase SPH.
引用
收藏
页码:1685 / 1714
页数:29
相关论文
共 50 条
  • [1] Smoothed particle hydrodynamics modelling of multiphase flows: an overview
    Pozorski, Jacek
    Olejnik, Michal
    [J]. ACTA MECHANICA, 2024, 235 (04) : 1685 - 1714
  • [2] Smoothed particle hydrodynamics method for evaporating multiphase flows
    Yang, Xiufeng
    Kong, Song-Charng
    [J]. PHYSICAL REVIEW E, 2017, 96 (03)
  • [3] An overview of smoothed particle hydrodynamics for simulating multiphase flow
    Wang, Zhi-Bin
    Chen, Rong
    Wang, Hong
    Liao, Qiang
    Zhu, Xun
    Li, Shu-Zhe
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (23-24) : 9625 - 9655
  • [4] Modelling aerated flows with smoothed particle hydrodynamics
    Meister, Michael
    Rauch, Wolfgang
    [J]. JOURNAL OF HYDROINFORMATICS, 2015, 17 (04) : 493 - 504
  • [5] An improved smoothed particle hydrodynamics method for modeling multiphase flows
    Li, Yongze
    Long, Ting
    [J]. PHYSICS OF FLUIDS, 2024, 36 (09)
  • [6] Modelling free surface flows with smoothed particle hydrodynamics
    Sigalotti, L. Di G.
    Daza, J.
    Donoso, A.
    [J]. CONDENSED MATTER PHYSICS, 2006, 9 (02) : 359 - 366
  • [7] Particle regeneration technique for Smoothed Particle Hydrodynamics in simulation of compressible multiphase flows
    Peng, Yu-Xiang
    Zhang, A-Man
    Ming, Fu-Ren
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
  • [8] Multiphase smoothed-particle hydrodynamics
    Ritchie, BW
    Thomas, PA
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 323 (03) : 743 - 756
  • [9] Application of Smoothed Particle Hydrodynamics for modelling gated spillway flows
    Saunders, Kate
    Prakash, Mahesh
    Cleary, Paul W.
    Cordell, Mark
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (17-18) : 4308 - 4322
  • [10] AN OVERVIEW ON SMOOTHED PARTICLE HYDRODYNAMICS
    Liu, M. B.
    Liu, G. R.
    Zong, Z.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2008, 5 (01) : 135 - 188