Minimal counterexamples to a conjecture of Hall and Paige <!-

被引:0
|
作者
F. Dalla Volta
N. Gavioli
机构
[1] Dipartimento di Matematica e Applicazioni,
[2] Edificio U7,undefined
[3] Università degli Studi di Milano–Bicocca,undefined
[4] Via Bicocca degli Arcimboldi 8,undefined
[5] I-20126 Milano – Italy,undefined
[6] dallavolta@matapp.unimib.it,undefined
[7] Dipartimento di matematica pura ed applicata,undefined
[8] Università degli Studi dell'Aquila,undefined
[9] Via Vetoio,undefined
[10] I-67010 Coppito (L'Aquila) – Italy,undefined
[11] gavioli@univaq.it,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
Finite Group; Prime Power; Minimal Order; Minimal Counterexample; Perfect Group;
D O I
暂无
中图分类号
学科分类号
摘要
A complete map for a group G is a permutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varphi\colon G\to G $$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g\mapsto g\varphi(g) $$\end{document} is still a permutation of G. A conjecture of M. Hall and L. J. Paige states that every finite group whose Sylow 2-subgroup is non-trivial and non-cyclic admits a complete map. In the present paper it is proved that a potential counterexample G of minimal order to this conjecture either is almost simple or G has only one involution, the Sylow 2-subgroups of G are quaternionic, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |G/G'|\leqq 2$, $G'\cong \ SL(2,q) $$\end{document} for some odd prime power \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q<5 $$\end{document} and if G is not a perfect group then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G/Z(G')\cong \rm{PGL}(2,\it{q}) $$\end{document}.
引用
收藏
页码:209 / 214
页数:5
相关论文
共 50 条
  • [1] Minimal counterexamples to a conjecture of Hall and Paige
    Dalla Volta, F
    Gavioli, N
    [J]. ARCHIV DER MATHEMATIK, 2001, 77 (03) : 209 - 214
  • [2] An asymptotic for the Hall-Paige conjecture
    Eberhard, Sean
    Manners, Freddie
    Mrazovic, Rudi
    [J]. ADVANCES IN MATHEMATICS, 2022, 404
  • [3] Latin squares and the Hall-Paige conjecture
    Vaughan-Lee, M
    Wanless, IM
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 191 - 195
  • [4] COUNTEREXAMPLES TO A CONJECTURE OF HARRIS ON HALL RATIO
    Blumenthal, Adam
    Lidicky, Bernard
    Martin, Ryan R.
    Norin, Sergey
    Pfender, Florian
    Volec, Jan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1678 - 1686
  • [5] THE TOPOLOGICAL VAUGHT CONJECTURE AND MINIMAL COUNTEREXAMPLES
    BECKER, H
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1994, 59 (03) : 757 - 784
  • [6] The Hall-Paige conjecture, and synchronization for affine and diagonal groups
    Bray, John N.
    Cai, Qi
    Cameron, Peter J.
    Spiga, Pablo
    Zhang, Hua
    [J]. JOURNAL OF ALGEBRA, 2020, 545 : 27 - 42
  • [7] Reduction of the Hall-Paige conjecture to sporadic simple groups
    Wilcox, Stewart
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (05) : 1407 - 1428
  • [8] On the connectivity of minimum and minimal counterexamples to Hadwiger's Conjecture
    Kawarabayashi, Ken-ichi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (01) : 144 - 150
  • [9] Minimal counterexamples to Hendrickson's conjecture on globally rigid graphs
    Grasegger, Georg
    [J]. EXAMPLES AND COUNTEREXAMPLES, 2023, 3
  • [10] Counterexamples to the uniformity conjecture
    Richardson, D
    Elsonbaty, A
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2006, 33 (1-2): : 58 - 64