Dynamic matchings in left vertex weighted convex bipartite graphs

被引:0
|
作者
Quan Zu
Miaomiao Zhang
Bin Yu
机构
[1] Tongji University,School of Software Engineering
来源
关键词
Dynamic matching; Weighted convex bipartite graph; Matroid; Alternating path; BST; Implicit representation;
D O I
暂无
中图分类号
学科分类号
摘要
A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph G=(X,Y,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(X,Y,E)$$\end{document} in which the neighbors of each x∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in X$$\end{document} form an interval in Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} where Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} is linearly ordered, and each x∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in X$$\end{document} has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a dynamic LWCBG. The graph is subject to the updates of vertex and edge insertions and deletions. Our dynamic algorithms maintain the update operations in O(log2|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2{|V|})$$\end{document} amortized time per update, obtain the matching status of a vertex (whether it is matched) in constant worst-case time, and find the pair of a matched vertex (with which it is matched) in worst-case O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k)$$\end{document} time, where k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is not greater than the cardinality of the maximum weight matching. That achieves the same time bound as the best known solution for the problem of the unweighted version.
引用
下载
收藏
页码:25 / 50
页数:25
相关论文
共 50 条
  • [1] Dynamic matchings in left vertex weighted convex bipartite graphs
    Zu, Quan
    Zhang, Miaomiao
    Yu, Bin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (01) : 25 - 50
  • [2] Dynamic Matchings in Left Weighted Convex Bipartite Graphs
    Zu, Quan
    Zhang, Miaomiao
    Yu, Bin
    FRONTIERS IN ALGORITHMICS, FAW 2014, 2014, 8497 : 330 - 342
  • [3] Dynamic matchings in convex bipartite graphs
    Brodal, Gerth Stolting
    Georgiadis, Loukas
    Hansen, Kristoffer Arnsfelt
    Katriel, Irit
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 406 - +
  • [4] Matchings in node-weighted convex bipartite graphs
    Katriel, Irit
    INFORMS JOURNAL ON COMPUTING, 2008, 20 (02) : 205 - 211
  • [5] Fast Dynamic Weight Matchings in Convex Bipartite Graphs
    Zu, Quan
    Zhang, Miaomiao
    Yu, Bin
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 601 - 612
  • [6] Optimum matchings in weighted bipartite graphs
    Valencia C.E.
    Vargas M.C.
    Boletín de la Sociedad Matemática Mexicana, 2016, 22 (1) : 1 - 12
  • [7] MATCHINGS IN VERTEX-TRANSITIVE BIPARTITE GRAPHS
    Csikvari, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 215 (01) : 99 - 134
  • [8] Matchings in vertex-transitive bipartite graphs
    Péter Csikvári
    Israel Journal of Mathematics, 2016, 215 : 99 - 134
  • [9] A linear time algorithm for maximum matchings in convex, bipartite graphs
    Steiner, G
    Yeomans, JS
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (12) : 91 - 96
  • [10] Circular convex bipartite graphs: Feedback vertex sets
    Liu, Tian
    Lu, Min
    Lu, Zhao
    Xu, Ke
    THEORETICAL COMPUTER SCIENCE, 2014, 556 : 55 - 62