Bayesian inference for data-driven training with application to seismic parameter prediction

被引:0
|
作者
Jorge Morales
Wen Yu
Luciano Telesca
机构
[1] CINVESTAV-IPN,Departamento de Control Automático
[2] National Research Council,Institute of Methodologies for Environmental Analysis
来源
Soft Computing | 2022年 / 26卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bayesian inference shows that the distribution of the future event not only depends on the past events (prior), but also depends on the relation between the past and the future events (likelihood). However, the classical Bayesian methods do not consider the important contributions of recent data. In this paper, we propose a new Bayesian inference-based training method, which can be used as online training for Bayesian methods. We give the training methods for the exponential and the normal models. We successfully apply this method for the seismic parameter prediction using the data of central Italy from 2014 to 2017. Comparisons show our method is more effective than the other Bayesian methods.
引用
收藏
页码:867 / 876
页数:9
相关论文
共 50 条
  • [1] Bayesian inference for data-driven training with application to seismic parameter prediction
    Morales, Jorge
    Yu, Wen
    Telesca, Luciano
    [J]. SOFT COMPUTING, 2022, 26 (02) : 867 - 876
  • [2] Data-driven seismic response prediction of structural components
    Luo, Huan
    Paal, Stephanie German
    [J]. EARTHQUAKE SPECTRA, 2022, 38 (02) : 1382 - 1416
  • [3] Data-Driven Parameter Prediction of Water Pumping Station
    Zhang, Jun
    Yu, Yongchuan
    Yan, Jianzhuo
    Chen, Jianhui
    [J]. WATER, 2023, 15 (06)
  • [4] Bayesian operator inference for data-driven reduced-order modeling
    Guo, Mengwu
    McQuarrie, Shane A.
    Willcox, Karen E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [5] Data-driven power control for state estimation: A Bayesian inference approach
    Wu, Junfeng
    Li, Yuzhe
    Quevedo, Daniel E.
    Lau, Vincent
    Shi, Ling
    [J]. AUTOMATICA, 2015, 54 : 332 - 339
  • [6] Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling
    Flouri, Dimitra
    Owen, David
    Aughwane, Rosalind
    Mufti, Nada
    Sokolska, Magdalena
    Atkinson, David
    Kendall, Giles
    Bainbridge, Alan
    Vercauteren, Tom
    David, Anna L.
    Ourselin, Sebastien
    Melbourne, Andrew
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 609 - 616
  • [7] PARAMETER ESTIMATION AND DATA-DRIVEN METHOD FOR FOREST FIRE PREDICTION
    Li, X.
    Tang, C.
    Zhang, M.
    Zhang, S.
    Li, S.
    Wang, Y.
    Sun, S.
    Liu, J.
    [J]. MATHEMATICAL AND COMPUTATIONAL FORESTRY & NATURAL-RESOURCE SCIENCES, 2023, 15 (01): : 7 - 16
  • [8] PARAMETER ESTIMATION AND DATA-DRIVEN METHOD FOR FOREST FIRE PREDICTION
    Li, X.
    Tang, C.
    Zhang, M.
    Zhang, S.
    Li, S.
    Wang, Y.
    Sun, S.
    Liu, J.
    [J]. Mathematical and Computational Forestry and Natural-Resource Sciences, 2023, 15 (01): : 7 - 16
  • [9] Data-Driven Bayesian Inference for Stochastic Model Identification of Nonlinear Aeroelastic Systems
    McGurk, Michael
    Lye, Adolphus
    Renson, Ludovic
    Yuan, Jie
    [J]. AIAA JOURNAL, 2024, 62 (05) : 1889 - 1905
  • [10] Data-Driven Probabilistic Optimal Power Flow With Nonparametric Bayesian Modeling and Inference
    Sun, Weigao
    Zamani, Mohsen
    Hesamzadeh, Mohammad Reza
    Zhang, Hai-Tao
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1077 - 1090