Electrical double layer in surface-inactive electrolyte solution and adsorption of halide ions from 0.1 M solutions on liquid Cd–Ga and In–Ga alloys in gamma-butyrolactone

被引:0
|
作者
V. V. Emets
A. A. Mel’nikov
B. B. Damaskin
机构
[1] Russian Academy of Sciences,Frumkin Institute of Physical Chemistry and Electrochemistry
[2] Moscow State University,Department of Chemistry
来源
关键词
gamma-butyrolactone; electrical double layer; differential capacitance; charge; zero-charge potential; cadmium–gallium and indium–gallium alloys; specific adsorption of halide ions;
D O I
暂无
中图分类号
学科分类号
摘要
The double-layer characteristics of liquid renewable Cd–Ga (0.3 at % Cd) and In–Ga (14.2 at % In) electrodes in the gamma-butyrolactone (GBL) solutions of various electrolytes are studied by measuring the differential capacitance and using the method of open-circuit jet electrode. For the (Cd–Ga)/GBL and (In–Ga)/GBL interfaces, the zero-charge potentials, which are not distorted by the specific adsorption of ions, and the chemisorption potential drops of solvent are determined. It is shown that, in spite of the fact that the work function decreases as we pass from (In–Ga) to (Cd–Ga), the chemisorption potential drops of solvent on both electrodes are close. This behavior is explained by a closer approach of GBL dipoles to the surface of (Cd-Ga) electrode providing more effective overlapping of donor–acceptor levels of metal and solvent. It is shown that, in GBL, the adsorption parameters of halide ions and their surface activity series depend on the metal nature. On the (Cd–Ga) and (In–Ga) electrodes, the reversed surface activity series of halide ions is observed: on the Hg electrode in various solvents, the surface activity increases in the series Cl– < Br– < I–, whereas on the (Cd–Ga) and (In–Ga) electrodes in GBL, it varies in the reverse series I– < Br– < Cl–.
引用
收藏
页码:7 / 16
页数:9
相关论文
共 10 条