Optimization-Based Safety Analysis of Obstacle Avoidance Systems for Unmanned Aerial Vehicles

被引:3
|
作者
Sivaranjini Srikanthakumar
Cunjia Liu
Wen Hua Chen
机构
[1] Loughborough University,Department of Aeronautical and Automotive Engineering
关键词
Clearance process; Obstacle avoidance; Optimization; Potential field method; Unmanned aerial vehicle;
D O I
暂无
中图分类号
学科分类号
摘要
The integration of Unmanned Aerial Vehicles (UAVs) in airspace requires new methods to certify collision avoidance systems. This paper presents a safety clearance process for obstacle avoidance systems, where worst case analysis is performed using simulation based optimization in the presence of all possible parameter variations. The clearance criterion for the UAV obstacle avoidance system is defined as the minimum distance from the aircraft to the obstacle during the collision avoidance maneuver. Local and global optimization based verification processes are developed to automatically search the worst combinations of the parameters and the worst-case distance between the UAV and an obstacle under all possible variations and uncertainties. Based on a 6 Degree of Freedom (6DoF) kinematic and dynamic model of a UAV, the path planning and collision avoidance algorithms are developed in 3D space. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is a simple and widely used method. Different optimization algorithms are applied and compared in terms of the reliability and efficiency.
引用
下载
收藏
页码:219 / 231
页数:12
相关论文
共 50 条
  • [1] Optimization-Based Safety Analysis of Obstacle Avoidance Systems for Unmanned Aerial Vehicles
    Srikanthakumar, Sivaranjini
    Liu, Cunjia
    Chen, Wen Hua
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2012, 65 (1-4) : 219 - 231
  • [2] Obstacle Avoidance for Flight Safety on Unmanned Aerial Vehicles
    Aguilar, Wilbert G.
    Casaliglla, Veronica P.
    Polit, Jose L.
    Abad, Vanessa
    Ruiz, Hugo
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 575 - 584
  • [3] Obstacle Avoidance for Unmanned Aerial Vehicles
    Santos Cruz, Goncalo Charters
    Martins Encarnacao, Pedro Miguel
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2012, 65 (1-4) : 203 - 217
  • [4] Obstacle Avoidance for Unmanned Aerial Vehicles
    Padhy, Ram Prasad
    Choudhury, Suman Kumar
    Sa, Pankaj Kumar
    Bakshi, Sambit
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2019, 8 (03) : 74 - 80
  • [5] Obstacle Avoidance for Unmanned Aerial Vehicles
    Gonçalo Charters Santos Cruz
    Pedro Miguel Martins Encarnação
    Journal of Intelligent & Robotic Systems, 2012, 65 : 203 - 217
  • [6] Monocular Vision-Based Obstacle Detection/Avoidance for Unmanned Aerial Vehicles
    Al-Kaff, Abdulla
    Meng, Qinggang
    Martin, David
    de la Escalera, Arturo
    Maria Armingol, Jose
    2016 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2016, : 92 - 97
  • [7] Haptic Feedback For Obstacle Avoidance Applied To Unmanned Aerial Vehicles
    Courtois, Hugo
    Aouf, Nabil
    2017 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'17), 2017, : 417 - 424
  • [8] Optimal Formation Control of Unmanned Aerial Vehicles with Obstacle Avoidance
    Rajasree, R.
    Jisha, V. R.
    2015 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2015, : 163 - 168
  • [9] Monocular Vision-based Obstacle Avoidance Trajectory Planning for Unmanned Aerial Vehicles
    Zhang, Zhouyu
    Zhang, Youmin
    Cao, Yunfeng
    2020 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'20), 2020, : 627 - 632
  • [10] Research on Obstacle Avoidance Technology for Unmanned Aerial Vehicles Based on Panoramic Visual Perception
    Jiang, Xiao-Yan
    Han, Mei
    Zhang, Jun-Kai
    Wu, Xiao-Fei
    Zhang, Xiao-Yang
    Journal of Computers (Taiwan), 2024, 35 (03) : 345 - 361