Chebyshev Polynomials on Compact Sets

被引:0
|
作者
Vilmos Totik
机构
[1] University of Szeged,Bolyai Institute, Analysis Research Group of the Hungarian Academy os Sciences
[2] University of South Florida,Department of Mathematics and Statistics
来源
Potential Analysis | 2014年 / 40卷
关键词
Chebyshev polynomials; Compact sets; Minimal norm; 31A15; 41A10;
D O I
暂无
中图分类号
学科分类号
摘要
In connection with a problem of H. Widom it is shown that if a compact set K on the complex plane contains a smooth Jordan arc on its outer boundary, then the minimal norm of monic polynomials of degree n = 1,2,... is at least (1 + β)cap(K)n with some β > 0, where cap(K)n would be the theoretical lower bound. It is also shown that the rate (1 + o(1))cap(K)n is possible only for compact for which the unbounded component of the complement is simply connected. A related result for sets lying on the real line is also proven.
引用
收藏
页码:511 / 524
页数:13
相关论文
共 50 条
  • [41] CHEBYSHEV SETS
    Fletcher, James
    Moors, Warren B.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 98 (02) : 161 - 231
  • [42] Representing Sums of Finite Products of Chebyshev Polynomials of the First Kind and Lucas Polynomials by Chebyshev Polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry V.
    Kwon, Jongkyum
    MATHEMATICS, 2019, 7 (01)
  • [43] Polynomials and holomorphic functions on A-compact sets in Banach spaces
    Lassalle, Silvia
    Turco, Pablo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 1092 - 1108
  • [44] ON CHEBYSHEV SETS
    VLASOV, LP
    DOKLADY AKADEMII NAUK SSSR, 1967, 173 (03): : 491 - &
  • [45] Resultants of Chebyshev Polynomials
    Gishe, Jemal
    Ismail, Mourad E. H.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2008, 27 (04): : 499 - 508
  • [46] Chebyshev polynomials for operators
    Albrecht, Ernst
    ARCHIV DER MATHEMATIK, 2009, 92 (05) : 399 - 404
  • [47] Symmetrized Chebyshev polynomials
    Rivin, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (05) : 1299 - 1305
  • [48] DERIVATIVES OF CHEBYSHEV POLYNOMIALS
    DELANY, J
    HUEHN, K
    AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (02): : 153 - 154
  • [49] On integer Chebyshev polynomials
    Habsieger, L
    Salvy, B
    MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 763 - 770
  • [50] GENERALIZATION OF CHEBYSHEV POLYNOMIALS
    SHPARLINSKII, IE
    SIBERIAN MATHEMATICAL JOURNAL, 1990, 31 (01) : 183 - 185