Spectral Properties of Four-Dimensional Compact Flat Manifolds

被引:0
|
作者
Roberto J. Miatello
Ricardo A. Podestá
机构
[1] Universidad Nacional de Córdoba,FaMAF – CIEM
来源
关键词
four-dimensional flat manifolds; isospectral; -spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We study the spectral properties of a large class of compact flat Riemannian manifolds of dimension 4, namely, those whose corresponding Bieberbach groups have the canonical lattice as translation lattice. By using the explicit expression of the heat trace of the Laplacian acting on p-forms, we determine all p-isospectral and L-isospectral pairs and we show that in this class of manifolds, isospectrality on functions and isospectrality on p-forms for all values of p are equivalent to each other. The list shows for any p, 1 ≤ p ≤ 3, many p-isospectral pairs that are not isospectral on functions and have different lengths of closed geodesics. We also determine all length isospectral pairs (i.e. with the same length multiplicities), showing that there are two weak length isospectral pairs that are not length isospectral, and many pairs, p-isospectral for all p and not length isospectral.
引用
收藏
页码:17 / 50
页数:33
相关论文
共 50 条
  • [1] Spectral properties of four-dimensional compact flat manifolds
    Miatello, RJ
    Podestá, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (01) : 17 - 50
  • [2] Four-Dimensional Compact Manifolds with Nonnegative Biorthogonal Curvature
    Costa, Ezio
    Ribeiro, Ernani, Jr.
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (04) : 747 - 761
  • [3] Compact Einstein-Weyl four-dimensional manifolds
    Bonneau, G
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (03) : 1057 - 1068
  • [4] NONLINEAR SCHRODINGER EQUATION ON FOUR-DIMENSIONAL COMPACT MANIFOLDS
    Gerard, Patrick
    Pierfelice, Vittoria
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2010, 138 (01): : 119 - 151
  • [5] Critical point equation on four-dimensional compact manifolds
    Barros, Abdenago
    Ribeiro, Ernani, Jr.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1618 - 1623
  • [6] MODIFIED YAMABE PROBLEM ON FOUR-DIMENSIONAL COMPACT MANIFOLDS
    Costa, E.
    Ribeiro, E., Jr.
    Santos, A.
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (04): : 1141 - 1156
  • [7] Rigidity of four-dimensional compact manifolds with harmonic Weyl tensor
    Ernani Ribeiro
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 2171 - 2181
  • [8] Rigidity of four-dimensional compact manifolds with harmonic Weyl tensor
    Ribeiro, Ernani, Jr.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 2171 - 2181
  • [9] Four-Dimensional, Ricci-Flat Manifolds which Admit a Metric
    Hall, Graham
    FILOMAT, 2015, 29 (03) : 563 - 571
  • [10] CLASSIFICATION OF SPIN STRUCTURES ON FOUR-DIMENSIONAL ALMOST-FLAT MANIFOLDS
    Lutowski, R.
    Petrosyan, N.
    Szczepanski, A.
    MATHEMATIKA, 2018, 64 (01) : 253 - 266