On the Frames of Translates on Locally Compact Abelian Groups

被引:0
|
作者
Najmeh Sadat Seyedi
Rajab Ali Kamyabi Gol
机构
[1] Ferdowsi University of Mashhad,Department of Pure Mathematics
[2] Center of Excellence in Analysis on Algebraic Structures (CEAAS),undefined
关键词
Locally compact abelian group; Fourier-like system; Fourier-like frame; Frames of translates; Oblique dual; 42C15; 43A70;
D O I
暂无
中图分类号
学科分类号
摘要
For a second countable locally compact abelian group G, we study a system of translates generated by f∈L2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^2 (G)$$\end{document}. We find some equivalent conditions of this family to have some fundamental frame properties. More precisely, let Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a uniform lattice in G (a closed subgroup which is cocompact and discrete) and Γ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ^*$$\end{document} be the annihilator of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} in G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{G}}$$\end{document}. For f∈L2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^2(G)$$\end{document}, the Γ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ^*$$\end{document}-periodic function Φf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _f$$\end{document} is defined as Φf(ξ)=∑γ∈Γ∗|f^(ξ+γ)|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _f (\xi ) = \sum _{\gamma \in {\Gamma } ^*} | {\widehat{f}} (\xi + \gamma ) |^2$$\end{document} on Γ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\Gamma }}$$\end{document} (the dual group of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}) and some of its properties are investigated. In particular, it is shown that if Φf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _f$$\end{document} is continuous, then the family {f(.+γ)}γ∈Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace f(.+ \gamma ) \rbrace _{\gamma \in \Gamma }$$\end{document} cannot be a redundant frame. Among other things, it is shown that there is an isometry from L2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G)$$\end{document} into L2(Γ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\widehat{\Gamma }})$$\end{document} in such a way that the system of translates in L2(Γ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\widehat{\Gamma }})$$\end{document} is transferred to a nice Fourier-like system in L2(Γ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\widehat{\Gamma }})$$\end{document}. Also, the canonical and oblique duals of the frames of translates are investigated.
引用
收藏
页码:2265 / 2286
页数:21
相关论文
共 50 条
  • [1] On the Frames of Translates on Locally Compact Abelian Groups
    Seyedi, Najmeh Sadat
    Gol, Rajab Ali Kamyabi
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2265 - 2286
  • [2] Characterizations of democratic systems of translates on locally compact abelian groups
    Vjekoslav Kovač
    Hrvoje Šikić
    [J]. Monatshefte für Mathematik, 2019, 189 : 459 - 485
  • [3] Characterizations of democratic systems of translates on locally compact abelian groups
    Kovac, Vjekoslav
    Sikic, Hrvoje
    [J]. MONATSHEFTE FUR MATHEMATIK, 2019, 189 (03): : 459 - 485
  • [4] φ-FRAMES AND φ-RIESZ BASES ON LOCALLY COMPACT ABELIAN GROUPS
    Gol, Rajab Ali Kamyabi
    Tousi, Reihaneh Raisi
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (05) : 899 - 912
  • [5] Identifying continuous Gabor frames on locally compact Abelian groups
    Hamidi, Zohre
    Arabyani-Neyshaburi, Fahimeh
    Kamyabi-Gol, Rajab A.
    Sattari, Mohammad H.
    [J]. FILOMAT, 2023, 37 (18) : 6011 - 6020
  • [6] Orthogonality of a pair of frames over locally compact abelian groups
    Gumber, Anupam
    Shukla, Niraj K.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1344 - 1360
  • [7] SHIFT GENERATED DUAL FRAMES FOR LOCALLY COMPACT ABELIAN GROUPS
    Ahmadi, Ahmad
    Askari-Hemmat, Ataollah
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (03) : 571 - 583
  • [8] Fourier-like frames on locally compact abelian groups
    Christensen, Ole
    Goh, Say Song
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 82 - 101
  • [9] Explicit construction of wavelet frames on locally compact Abelian groups
    Kumar, Raj
    Satyapriya
    Shah, Firdous A.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
  • [10] Explicit construction of wavelet frames on locally compact Abelian groups
    Raj Kumar
    Firdous A. Satyapriya
    [J]. Analysis and Mathematical Physics, 2022, 12