Genetic algorithm segmentation in partial least squares structural equation modeling

被引:0
|
作者
Christian M. Ringle
Marko Sarstedt
Rainer Schlittgen
机构
[1] Hamburg University of Technology (TUHH),Institute for Human Resource Management and Organizations (HRMO)
[2] University of Newcastle,Faculty of Law and Business
[3] Otto-von-Guericke-University Magdeburg,Institute for Statistics and Econometrics
[4] University of Hamburg,undefined
来源
OR Spectrum | 2014年 / 36卷
关键词
Genetic algorithm; Partial least squares; Path modeling; PLS-SEM; Segmentation; Structural equation modeling;
D O I
暂无
中图分类号
学科分类号
摘要
When applying the partial least squares structural equation modeling (PLS-SEM) method, the assumption that the data stem from a single homogeneous population is often unrealistic. For the full set of data, unobserved heterogeneity in the PLS path model estimates may result in misleading interpretations. This research presents the PLS genetic algorithm segmentation (PLS-GAS) method to account for unobserved heterogeneity in the path model estimates. The results of a simulation study guide an assessment of this novel approach. PLS-GAS allows for uncovering unobserved heterogeneity and identifying different groups within a data set. In an application on customer satisfaction data and the American customer satisfaction index model, the method identifies distinctive group-specific PLS path model estimates which allow for a further differentiated interpretation of the results.
引用
收藏
页码:251 / 276
页数:25
相关论文
共 50 条
  • [1] Genetic algorithm segmentation in partial least squares structural equation modeling
    Ringle, Christian M.
    Sarstedt, Marko
    Schlittgen, Rainer
    [J]. OR SPECTRUM, 2014, 36 (01) : 251 - 276
  • [2] Partial Least Squares Structural Equation Modeling Algorithm for Electronic Wallet
    Nguyen Thi Ngan
    Bui Huy Khoi
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLIED NETWORK TECHNOLOGIES (ICMLANT II), 2021, : 73 - 78
  • [3] Finding groups in structural equation modeling through the partial least squares algorithm
    Fordellone, Mario
    Vichi, Maurizio
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 147
  • [4] A Primer on Partial Least Squares Structural Equation Modeling
    Ketchen, David J., Jr.
    [J]. LONG RANGE PLANNING, 2013, 46 (1-2) : 184 - 185
  • [5] Segmentation in Structural Equation Modeling Using a Combination of Partial Least Squares and Modified Fuzzy Clustering
    Mukid, Moch Abdul
    Otok, Bambang Widjanarko
    Suharsono, Agus
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [6] Partial Least Squares: The Better Approach to Structural Equation Modeling?
    Hair, Joseph F.
    Ringle, Christian M.
    Sarstedt, Marko
    [J]. LONG RANGE PLANNING, 2012, 45 (5-6) : 312 - 319
  • [7] Partial least squares structural equation modeling in HRM research
    Ringle, Christian M.
    Sarstedt, Marko
    Mitchell, Rebecca
    Gudergan, Siegfried P.
    [J]. INTERNATIONAL JOURNAL OF HUMAN RESOURCE MANAGEMENT, 2020, 31 (12): : 1617 - 1643
  • [8] semPLS: Structural Equation Modeling Using Partial Least Squares
    Monecke, Armin
    Leisch, Friedrich
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 48 (03): : 1 - 32
  • [9] Nonlinear structural equation modeling: is partial least squares an alternative?
    Schermelleh-Engel, Karin
    Werner, Christina S.
    Klein, Andreas G.
    Moosbrugger, Helfried
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2010, 94 (02) : 167 - 184
  • [10] Nonlinear structural equation modeling: is partial least squares an alternative?
    Karin Schermelleh-Engel
    Christina S. Werner
    Andreas G. Klein
    Helfried Moosbrugger
    [J]. AStA Advances in Statistical Analysis, 2010, 94 : 167 - 184