UFL1 regulates milk protein and fat synthesis–related gene expression of bovine mammary epithelial cells probably via the mTOR signaling pathway

被引:0
|
作者
Chengmin Li
Lian Li
Ilyas Ali
Meiqian Kuang
Xinling Wang
Genlin Wang
机构
[1] Nanjing Agricultural University,College of Animal Science and Technology
[2] Jiangsu University of Science and Technology,Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology
关键词
UFL1; Bovine mammary epithelial cells; Milk synthesis; Cell proliferation; mTOR;
D O I
暂无
中图分类号
学科分类号
摘要
UFL1 is an ufmylation (a novel post-translational modification) E3 ligase, mainly located in the endoplasmic reticulum (ER), that has emerged as a significant regulator of several physiological and pathological processes. Yet its physiological function in milk synthesis in bovine mammary epithelial cells (BMECs) remains unknown. In this study, we investigated the effects of UFL1 in milk protein and fat synthesis–related gene expression, with a particular emphasis on the role of UFL1 in LPS-treated BMECs. Results showed that UFL1 depletion significantly reduced the expression of milk protein and fat synthesis–related gene and mTOR phosphorylation in both normal and LPS-treated BMECs. Overexpression of UFL1 enhanced the activation of the mTOR and milk protein and fat synthesis–related gene expression. Collectively, these above results strongly demonstrate that UFL1 could regulate milk protein and fat synthesis–related gene expression of BMECs probably via the mTOR signaling pathway.
引用
收藏
页码:550 / 559
页数:9
相关论文
共 50 条
  • [1] UFL1 regulates milk protein and fat synthesis-related gene expression of bovine mammary epithelial cells probably via the mTOR signaling pathway
    Li, Chengmin
    Li, Lian
    Ali, Ilyas
    Kuang, Meiqian
    Wang, Xinling
    Wang, Genlin
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2021, 57 (05) : 550 - 559
  • [2] Phenylalanine Regulates Milk Protein Synthesis via LAT1-mTOR Signaling Pathways in Bovine Mammary Epithelial Cells
    Guo, Long
    Zheng, Chen
    Chen, Jiao
    Du, Ruifang
    Li, Fei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (23)
  • [3] Leucine and histidine independently regulate milk protein synthesis in bovine mammary epithelial cells via mTOR signaling pathway
    Gao, Hai-na
    Hu, Han
    Zheng, Nan
    Wang, Jia-qi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2015, 16 (06): : 560 - 572
  • [4] Melatonin suppresses milk fat synthesis by inhibiting the mTOR signaling pathway via the MT1 receptor in bovine mammary epithelial cells
    Wang, Yujuan
    Guo, Wenli
    Xu, Haichao
    Tang, Keqiong
    Zan, Linen
    Yang, Wucai
    JOURNAL OF PINEAL RESEARCH, 2019, 67 (03)
  • [5] Acetate-Induced Milk Fat Synthesis Is Associated with Activation of the mTOR Signaling Pathway in Bovine Mammary Epithelial Cells
    Lin, Miao
    Jiang, Maocheng
    Yang, Tianyu
    Tan, Dejin
    Hu, Guanghui
    Zhao, Guoqi
    Zhan, Kang
    ANIMALS, 2022, 12 (19):
  • [6] Twinfilin 1 enhances milk bio-synthesis and proliferation of bovine mammary epithelial cells via the mTOR signaling pathway
    Li, Lu
    Liu, Lijie
    Qu, Bo
    Li, Xueying
    Gao, Xuejun
    Zhang, Minghui
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 492 (03) : 289 - 294
  • [7] Annexin A2 positively regulates milk synthesis and proliferation of bovine mammary epithelial cells through the mTOR signaling pathway
    Zhang, Minghui
    Chen, Dongying
    Zhen, Zhen
    Ao, Jinxia
    Yuan, Xiaohan
    Gao, Xuejun
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (03) : 2464 - 2475
  • [8] MEN1/Menin regulates milk protein synthesis through mTOR signaling in mammary epithelial cells
    Honghui Li
    Xue Liu
    Zhonghua Wang
    Xueyan Lin
    Zhengui Yan
    Qiaoqiao Cao
    Meng Zhao
    Kerong Shi
    Scientific Reports, 7
  • [9] MEN1/Menin regulates milk protein synthesis through mTOR signaling in mammary epithelial cells
    Li, Honghui
    Liu, Xue
    Wang, Zhonghua
    Lin, Xueyan
    Yan, Zhengui
    Cao, Qiaoqiao
    Zhao, Meng
    Shi, Kerong
    SCIENTIFIC REPORTS, 2017, 7
  • [10] NDRG1 negatively regulates proliferation and Milk bio-synthesis of bovine epithelial cells via the mTOR signaling pathway
    Li, Xueru
    Zhang, Pengyuan
    Wang, Bingbing
    Zhang, Jinjing
    Zhang, Yong
    Gao, Ming-Qing
    RESEARCH IN VETERINARY SCIENCE, 2019, 124 : 158 - 165