Global Large Solutions and Incompressible Limit for the Compressible Navier–Stokes Equations

被引:2
|
作者
Zhi-Min Chen
Xiaoping Zhai
机构
[1] Shenzhen University,School of Mathematics and Statistics
关键词
Compressible Navier–Stokes equations; Incompressible limit; Besov spaces; Global well-posedness; 35Q35; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is dedicated to the global large solutions and incompressible limit for the compressible Navier–Stokes system in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} with d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}. Motivated by the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} work of Danchin and Mucha (Adv Math 320:904–925, 2017) in critical Besov spaces, we extend the solution space into an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} framework. The result implies the existence of global large solutions initially from large highly oscillating velocity fields.
引用
收藏
相关论文
共 50 条