LEA U-Net: a U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation

被引:0
|
作者
Jihong Ouyang
Siguang Liu
Hao Peng
Harish Garg
Dang N. H. Thanh
机构
[1] Jilin University,College of Computer Science and Technology
[2] Jilin University,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education
[3] Thapar Institute of Engineering and Technology (Deemed University),School of Mathematics
[4] Graphic Era Deemed to be University,Department of Mathematics
[5] Applied Science Private University,Applied Science Research Center
[6] The Islamic University,College of Technical Engineering
[7] University of Economics Ho Chi Minh City,Department of Information Technology, School of Business Information Technology
来源
关键词
Deep learning; Retinal vessel segmentation; U-Net; Dilated convolution; Attention;
D O I
暂无
中图分类号
学科分类号
摘要
Feature extraction of the retinal blood vessel is one of the crucial tasks in the prediction of ophthalmologic diseases. Important features are extracted based on image segmentation results. The efficiency of vessel segmentation methods could help doctors in the diagnostic of several relevant diseases as early as possible. Recently, U-Net has achieved good results in many medical image segmentation tasks, especially for images of blood vessels. However, due to the limitation of the network structure, some small features could be lost in the transmission process. As a result, there are still many research gaps for U-Net-based retinal vessel segmentation works. In this paper, we propose an improved U-Net based model to segment images of retinal vessels. The improvement focuses on U-Net from two aspects: designing a local feature enhancement module composed of dilated convolution and 1×1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\times 1$$\end{document} convolution to enhance the feature extraction of tiny vessels; integrating an attention mechanism with skip connection of the network to highlight features related to vessel segmentation information taken from the down-sampling part to the up-sampling part. The performance of the proposed model was evaluated and compared with several published state-of-the-art approaches on the same public dataset—DRIVE, and the proposed method achieved an accuracy of 0.9563, F1-score of 0.823, TPR of 0.7983, and TNR of 0.9793. The AUC of PRC is 0.9109 and the AUC of ROC is 0.9794. The results proved the potential for clinical applications.
引用
收藏
页码:6753 / 6766
页数:13
相关论文
共 50 条
  • [1] LEA U-Net: a U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation
    Ouyang, Jihong
    Liu, Siguang
    Peng, Hao
    Garg, Harish
    Thanh, Dang N. H.
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6753 - 6766
  • [2] U-Net with Attention Mechanism for Retinal Vessel Segmentation
    Si, Ze
    Fu, Dongmei
    Li, Jiahao
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 668 - 677
  • [3] Feature pyramid U-Net for retinal vessel segmentation
    Liu, Yi-Peng
    Rui, Xue
    Li, Zhanqing
    Zeng, Dongxu
    Li, Jing
    Chen, Peng
    Liang, Ronghua
    [J]. IET IMAGE PROCESSING, 2021, 15 (08) : 1733 - 1744
  • [4] CHANNEL ATTENTION RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Guo, Changlu
    Szemenyei, Marton
    Hu, Yangtao
    Wang, Wenle
    Zhou, Wei
    Yi, Yugen
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1185 - 1189
  • [5] Retinal Vessel Segmentation Method Based on Improved Deep U-Net
    Cai, Yiheng
    Li, Yuanyuan
    Gao, Xurong
    Guo, Yajun
    [J]. BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 321 - 328
  • [6] Factorized U-net for Retinal Vessel Segmentation
    Gurrola-Ramos, Javier
    Dalmau, Oscar
    Alarcon, Teresa
    [J]. PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 181 - 190
  • [7] Extended U-net for Retinal Vessel Segmentation
    Boudegga, Henda
    Elloumi, Yaroub
    Kachouri, Rostom
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    [J]. ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 564 - 576
  • [8] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [9] PYRAMID U-NET FOR RETINAL VESSEL SEGMENTATION
    Zhang, Jiawei
    Zhang, Yanchun
    Xu, Xiaowei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1125 - 1129
  • [10] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE ACCESS, 2024, 12 : 534 - 551