Aerodynamic Properties of Rough Surfaces with High Aspect-Ratio Roughness Elements: Effect of Aspect Ratio and Arrangements

被引:0
|
作者
Jasim Sadique
Xiang I. A. Yang
Charles Meneveau
Rajat Mittal
机构
[1] The Johns Hopkins University,Department of Mechanical Engineering
来源
Boundary-Layer Meteorology | 2017年 / 163卷
关键词
Analytical model; High aspect-ratio roughness elements; Rough-wall boundary layers; Wall modelled large-eddy simulations;
D O I
暂无
中图分类号
学科分类号
摘要
We examine the effect of varying roughness-element aspect ratio on the mean velocity distributions of turbulent flow over arrays of rectangular-prism-shaped elements. Large-eddy simulations (LES) in conjunction with a sharp-interface immersed boundary method are used to simulate spatially-growing turbulent boundary layers over these rough surfaces. Arrays of aligned and staggered rectangular roughness elements with aspect ratio >1 are considered. First the temporally- and spatially-averaged velocity profiles are used to illustrate the aspect-ratio effects. For aligned prisms, the roughness length (zo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_\mathrm{o}$$\end{document}) and the friction velocity (u∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_*$$\end{document}) increase initially with an increase in the roughness-element aspect ratio, until the values reach a plateau at a particular aspect ratio. The exact value of this aspect ratio depends on the coverage density. Further increase in the aspect ratio changes neither zo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_\mathrm{o}$$\end{document}, u∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_*$$\end{document} nor the bulk flow above the roughness elements. For the staggered cases, zo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_\mathrm{o}$$\end{document} and u∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_*$$\end{document} continue to increase for the surface coverage density and the aspect ratios investigated. To model the flow response to variations in roughness aspect ratio, we turn to a previously developed phenomenological volumetric sheltering model (Yang et al., in J Fluid Mech 789:127–165, 2016), which was intended for low to moderate aspect-ratio roughness elements. Here, we extend this model to account for high aspect-ratio roughness elements. We find that for aligned cases, the model predicts strong mutual sheltering among the roughness elements, while the effect is much weaker for staggered cases. The model-predicted zo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_\mathrm{o}$$\end{document} and u∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_*$$\end{document} agree well with the LES results. Results show that the model, which takes explicit account of the mutual sheltering effects, provides a rapid and reliable prediction method of roughness effects in turbulent boundary-layer flows over arrays of rectangular-prism roughness elements.
引用
收藏
页码:203 / 224
页数:21
相关论文
共 50 条
  • [1] Aerodynamic Properties of Rough Surfaces with High Aspect-Ratio Roughness Elements: Effect of Aspect Ratio and Arrangements
    Sadique, Jasim
    Yang, Xiang I. A.
    Meneveau, Charles
    Mittal, Rajat
    [J]. BOUNDARY-LAYER METEOROLOGY, 2017, 163 (02) : 203 - 224
  • [2] DROPWISE CONDENSATION ON HIGH ASPECT-RATIO SURFACE ROUGHNESS
    Cai, Qingjun
    Tsai, Chialun
    [J]. PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 1, 2012, : 509 - 515
  • [3] A high aspect-ratio holey metalens
    Lim, Soon Wei Daniel
    Meretska, Maryna Leonidivna
    Capasso, Federico
    [J]. 2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [4] Aeroacoustics of a high aspect-ratio jet
    Georgia Tech Research Institute ATAS Lab, Naval Air Warfare Center, Weapons Division, China Lake, CA 93555-6100, United States
    不详
    [J]. 1600, (2003):
  • [5] Flutter suppression of a high aspect-ratio wing with multiple control surfaces
    Zhao, Y. H.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2009, 324 (3-5) : 490 - 513
  • [6] Influence of leading edge tubercles on aerodynamic characteristics of a high aspect-ratio UAV
    Sudhakar, S.
    Karthikeyan, N.
    Venkatakrishnan, L.
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 69 : 281 - 289
  • [7] A theory for inextensible and high aspect-ratio sails
    Sugimoto, T
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1996, 63 (1-3) : 61 - 75
  • [8] HIGH ASPECT-RATIO HOLOGRAPHIC PHOTORESIST GRATINGS
    ZAIDI, SH
    BRUECK, SRJ
    [J]. APPLIED OPTICS, 1988, 27 (14): : 2999 - 3002
  • [9] High aspect-ratio polysilicon micromachining technology
    Ayazi, F
    Najafi, K
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2000, 87 (1-2) : 46 - 51
  • [10] High aspect-ratio fine-line metallization
    Chang, CL
    Chang, PZ
    Yen, KS
    Lu, SS
    [J]. MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY IV, 1998, 3511 : 357 - 363