The Apophis asteroid attracted the attention of scientists immediately after its discovery in 2004, because the initially determined orbit of this asteroid assumes a possible collision with Earth in April 2029. The size of Apophis is about several hundred meters, and its collision with Earth might result in a large regional or even global catastrophe. At present, the trajectory of Apophis has been calculated more accurately, and a collision in 2029 has ruled out; the asteroid will pass Earth at a distance of about 37 000 km from its center. However, close approaches or collisions are possible after 2029, including the most probable in 2036. The risk of collision in 2036 is well known and actively examined by the scientists. In this study, we consider the peculiarities of the asteroid motion associated with its approach in 2029 and with a possible close approach in 2036. The trajectories scatter during the approaches and the loss of accuracy is associated with these scatterings. As a result, the trajectory of Apophis may become nondeterministic after 2036; that is, it cannot now be determined unambiguously. Although such events are very unlikely, it is interesting to examine a variety of alternative variants of Apophis’ close approaches and collisions with Earth immediately after 2036. The effects of small variations in the asteroid velocity at different moments in time after its impact with a certain mass are discussed.