A Systematic Review of Anomaly Detection for Business Process Event Logs

被引:0
|
作者
Jonghyeon Ko
Marco Comuzzi
机构
[1] Free University of Bozen-Bolzano,Faculty of Computer Science
[2] Ulsan National Institute of Science and Technology,Department of Industrial Engineering
关键词
Anomaly detection; Event log quality; Business process; Process data;
D O I
暂无
中图分类号
学科分类号
摘要
While a business process is most often executed following a normal path, anomalies may sometimes arise and can be captured in event logs. Event log anomalies stem, for instance, from system malfunctioning or unexpected behavior of human resources involved in a process. To identify and possibly fix these, anomaly detection has emerged recently as a key discipline in process mining. In the paper, the authors present a systematic review of the literature on business process event log anomaly detection. The review aims at selecting systematically studies in the literature that have tackled the issue of event log anomaly detection, classifying existing approaches based on criteria emerging from previous literature reviews, and identifying those research directions in this field that have not been explored extensively. Based on the results of the review, the authors argue that future research should look more specifically into anomaly detection on event streams, extending the number of event log attributes considered to determine anomalies, and producing more standard labeled datasets to benchmark the techniques proposed.
引用
收藏
页码:441 / 462
页数:21
相关论文
共 50 条
  • [1] A Systematic Review of Anomaly Detection for Business Process Event Logs
    Ko, Jonghyeon
    Comuzzi, Marco
    [J]. BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2023, 65 (04) : 441 - 462
  • [2] ANOMALY DETECTION ALGORITHMS IN BUSINESS PROCESS LOGS
    Bezerra, Fabio
    Wainer, Jacques
    [J]. ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL AIDSS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2008, : 11 - 18
  • [3] Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising Autoencoders
    Nolle, Timo
    Seeliger, Alexander
    Muehlhaeuser, Max
    [J]. DISCOVERY SCIENCE, (DS 2016), 2016, 9956 : 442 - 456
  • [4] Local Concurrency Detection in Business Process Event Logs
    Armas-Cervantes, Abel
    Dumas, Marlon
    La Rosa, Marcello
    Maaradji, Abderrahmane
    [J]. ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2019, 19 (01)
  • [5] Anomaly Detection on Event Logs with a Scarcity of Labels
    Barbon Junior, Sylvio
    Ceravolo, Paolo
    Damiani, Ernesto
    Omori, Nicolas Jashchenko
    Tavares, Gabriel Marques
    [J]. 2020 2ND INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2020), 2020, : 161 - 168
  • [6] Sampling business process event logs with guarantees
    Su, Xuan
    Liu, Cong
    Zhang, Shuaipeng
    Zeng, Qingtian
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (13):
  • [7] Discovering Business Process Architectures from Event Logs
    Bano, Dorina
    Nikaj, Adriatik
    Weske, Mathias
    [J]. BUSINESS PROCESS MANAGEMENT FORUM (BPM 2021), 2021, 427 : 162 - 177
  • [8] Mining Business Process Stages from Event Logs
    Hoang Nguyen
    Dumas, Marlon
    ter Hofstede, Arthur H. M.
    La Rosa, Marcello
    Maggi, Fabrizio Maria
    [J]. ADVANCED INFORMATION SYSTEMS ENGINEERING (CAISE 2017), 2017, 10253 : 577 - 594
  • [9] A Comprehensive Review of Anomaly Detection in Web Logs
    Majd, Mehryar
    Najafi, Pejman
    Alhosseini, Seyed Ali
    Cheng, Feng
    Meinel, Christoph
    [J]. 2022 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT, 2022, : 158 - 165
  • [10] How to Configure Masked Event Anomaly Detection on Software Logs?
    Nyyssola, Jesse
    Mantyla, Mika
    Varela, Martin
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2022), 2022, : 414 - 418