Super-EGO: fast multi-dimensional similarity join

被引:0
|
作者
Dmitri V. Kalashnikov
机构
[1] University of California,Department of Computer Science
来源
The VLDB Journal | 2013年 / 22卷
关键词
Epsilon join; Similarity join; Multi-dimensional join; Euclidean space;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient processing of high-dimensional similarity joins plays an important role for a wide variety of data-driven applications. In this paper, we consider \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-join variant of the problem. Given two \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional datasets and parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, the task is to find all pairs of points, one from each dataset that are within \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} distance from each other. We propose a new \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-join algorithm, called Super-EGO, which belongs the EGO family of join algorithms. The new algorithm gains its advantage by using novel data-driven dimensionality re-ordering technique, developing a new EGO-strategy that more aggressively avoids unnecessary computation, as well as by developing a parallel version of the algorithm. We study the newly proposed Super-EGO algorithm on large real and synthetic datasets. The empirical study demonstrates significant advantage of the proposed solution over the existing state of the art techniques.
引用
收藏
页码:561 / 585
页数:24
相关论文
共 50 条