Algebraic Lattices in QFT Renormalization

被引:0
|
作者
Michael Borinsky
机构
[1] Humboldt University,Institute of Physics
来源
关键词
quantum field theory; renormalization; Hopf algebra of Feynman diagrams; algebraic lattices; zero-dimensional QFT; 81T18; 81T15; 81T16; 06B99;
D O I
暂无
中图分类号
学科分类号
摘要
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
引用
收藏
页码:879 / 911
页数:32
相关论文
共 50 条
  • [1] Algebraic Lattices in QFT Renormalization
    Borinsky, Michael
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (07) : 879 - 911
  • [2] Algebraic structure of the renormalization group in the renormalizable QFT theories
    Kataev, A. L.
    Stepanyantz, K. V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (34):
  • [3] Noncommutative QFT and renormalization
    Grosse, Harald
    Wulkenhaar, Raimar
    QUANTUM GRAVITY: MATHEMATICAL MODELS AND EXPERIMENTAL BOUNDS, 2007, : 315 - +
  • [4] Noncommutative QFT and renormalization
    Grosse, H
    Wulkenhaar, R
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (2-3): : 116 - 123
  • [5] Setting the Renormalization Scale in QFT
    Contreras, Carlos
    Koch, Benjamin
    Rioseco, Paola
    XIX CHILEAN PHYSICS SYMPOSIUM 2014, 2016, 720
  • [6] Renormalization group in abstract QFT
    Mironov, A
    Morozov, A
    PHYSICS LETTERS B, 2000, 490 (1-2) : 173 - 179
  • [7] Algebraic Structures in local QFT
    Kreimer, D.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2010, 205-06 : 122 - 128
  • [8] RENORMALIZATION GROUP FOR NON-RENORMALIZABLE QFT
    BLOKHINTSEV, DI
    EFREMOV, AV
    SHIRKOV, DV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (12): : 23 - 29
  • [9] Renormalization of position space amplitudes in a massless QFT
    Ivan Todorov
    Physics of Particles and Nuclei, 2017, 48 : 227 - 236
  • [10] Motivations and physical aims of algebraic QFT
    Schroer, B
    ANNALS OF PHYSICS, 1997, 255 (02) : 270 - 304