Spaces of Variable Smoothness and Integrability: Characterizations by Local Means and Ball Means of Differences

被引:0
|
作者
Henning Kempka
Jan Vybíral
机构
[1] Friedrich-Schiller-University Jena,Mathematical Institute
[2] TU Berlin,Department of Mathematics
关键词
Besov spaces; Triebel-Lizorkin spaces; Variable smoothness; Variable integrability; Ball means of differences; Peetre maximal operator; 2-microlocal spaces; 46E35; 46E30; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We study the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb {R}^{n})$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb{R}^{n})$\end{document} of Besov and Triebel-Lizorkin type as introduced recently in Almeida and Hästö (J. Funct. Anal. 258(5):1628–2655, 2010) and Diening et al. (J. Funct. Anal. 256(6):1731–1768, 2009). Both scales cover many classical spaces with fixed exponents as well as function spaces of variable smoothness and function spaces of variable integrability.
引用
收藏
页码:852 / 891
页数:39
相关论文
共 50 条