Exact Solutions and Integrability of the Duffing – Van der Pol Equation

被引:0
|
作者
Nikolay A. Kudryashov
机构
[1] National Research Nuclear University MEPhI,Department of Applied Mathematics
来源
关键词
Duffing–Van der Pol oscillator; Painlevé test; exact solution; truncated expansion; singular manifold; general solution; 34M25;
D O I
暂无
中图分类号
学科分类号
摘要
The force-free Duffing–Van der Pol oscillator is considered. The truncated expansions for finding the solutions are used to look for exact solutions of this nonlinear ordinary differential equation. Conditions on parameter values of the equation are found to have the linearization of the Duffing–Van der Pol equation. The Painlevé test for this equation is used to study the integrability of the model. Exact solutions of this differential equation are found. In the special case the approach is simplified to demonstrate that some well-known methods can be used for finding exact solutions of nonlinear differential equations. The first integral of the Duffing–Van der Pol equation is found and the general solution of the equation is given in the special case for parameters of the equation. We also demonstrate the efficiency of the method for finding the first integral and the general solution for one of nonlinear second-order ordinary differential equations.
引用
收藏
页码:471 / 479
页数:8
相关论文
共 50 条
  • [1] Exact Solutions and Integrability of the Duffing - Van der Pol Equation
    Kudryashov, Nikolay A.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (04): : 471 - 479
  • [2] PERIODIC-SOLUTIONS OF A COMBINED VAN DER POL DUFFING DIFFERENTIAL EQUATION
    HORVATH, AJT
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1975, 17 (11-1) : 677 - 680
  • [3] PERIODIC SOLUTIONS OF VAN DER POL AND DUFFING EQUATIONS
    NICHOLSON, AF
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1965, CT12 (04): : 595 - +
  • [4] Solutions of the Force-Free Duffing-van der Pol Oscillator Equation
    Khan, Najeeb Alam
    Jamil, Muhammad
    Ali, Syed Anwar
    Khan, Nadeem Alam
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
  • [5] Darboux integrability of a Mathieu-van der Pol-Duffing oscillator
    Cen, Zhihao
    Xie, Feng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 70
  • [6] Complex dynamics in Duffing-Van der Pol equation
    Jing, ZJ
    Yang, ZY
    Jiang, T
    CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 722 - 747
  • [7] The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics
    Cherevko, A. A.
    Bord, E. E.
    Khe, A. K.
    Panarin, V. A.
    Orlov, K. J.
    ALL-RUSSIAN CONFERENCE WITH INTERNATIONAL PARTICIPATION MODERN PROBLEMS OF CONTINUUM MECHANICS AND EXPLOSION PHYSICS DEDICATED TO THE 60TH ANNIVERSARY OF LAVRENTYEV INSTITUTE OF HYDRODYNAMICS SB RAS, 2017, 894
  • [8] PERIODIC SOLUTIONS OF VAN DER POL EQUATION
    ZONNEVELD, JA
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1966, 69 (05): : 620 - +
  • [9] On Periodic Perturbations of Asymmetric Duffing-Van-der-Pol Equation
    Morozov, Albert D.
    Kostromina, Olga S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (05):
  • [10] Filtering for a Duffing-van der Pol stochastic differential equation
    Patel, Hiren G.
    Sharma, Shambhu N.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 386 - 397