By using vector Riccati transformation and averaging technique, some oscillation criteria
for the quasilinear elliptic di.erential equation of second order,
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\sum\limits_{i,j = 1}^N {D_i \left[ {\Psi \left( y \right)A_{ij} \left( x \right)\left| {Dy} \right|^{p - 2} D_j y} \right] + p\left( x \right)f\left( y \right)} = 0,
$$\end{document}are obtained. These theorems extend and include earlier results for the semilinear elliptic equation and
PDE with p-Laplacian.
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
机构:
Hiroshima Univ, Fac Integrated Arts & Sci, Dept Math, Higashihiroshima 7398521, JapanHiroshima Univ, Fac Integrated Arts & Sci, Dept Math, Higashihiroshima 7398521, Japan
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China