We prove two new results for Seshadri constants on surfaces of general type. Let X be a surface of general type. In the first part, inspired by Bauer and Szemberg (Manuscripta Math 126(2):167–175, 2008), we list the possible values for the multi-point Seshadri constant ε(KX,x1,x2,…,xr)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon (K_X,x_1,x_2,\ldots ,x_r)$$\end{document} when it lies between 0 and 1/r, where KX\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_X$$\end{document} is the canonical line bundle on X. In the second part, we assume X of the form C×C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C \times C$$\end{document}, where C is a general smooth curve of genus g⩾2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g \geqslant 2$$\end{document}. Given such X and an ample line bundle L on X with some conditions on it, we show that the global Seshadri constant of L is a rational number.