Hierarchical modeling for extreme values observed over space and time

被引:0
|
作者
Huiyan Sang
Alan E. Gelfand
机构
[1] Institute of Statistics and Decision Sciences,
关键词
Coregionalization; Generalized extreme value distribution; Markov random field; Precipitation surfaces; Spatial random effects;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hierarchical modeling approach for explaining a collection of spatially referenced time series of extreme values. We assume that the observations follow generalized extreme value (GEV) distributions whose locations and scales are jointly spatially dependent where the dependence is captured using multivariate Markov random field models specified through coregionalization. In addition, there is temporal dependence in the locations. There are various ways to provide appropriate specifications; we consider four choices. The models can be fitted using a Markov Chain Monte Carlo (MCMC) algorithm to enable inference for parameters and to provide spatio–temporal predictions. We fit the models to a set of gridded interpolated precipitation data collected over a 50-year period for the Cape Floristic Region in South Africa, summarizing results for what appears to be the best choice of model.
引用
收藏
页码:407 / 426
页数:19
相关论文
共 50 条
  • [1] Hierarchical modeling for extreme values observed over space and time
    Sang, Huiyan
    Gelfand, Alan E.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2009, 16 (03) : 407 - 426
  • [2] MODELING EXTREME VALUES OF PROCESSES OBSERVED AT IRREGULAR TIME STEPS: APPLICATION TO SIGNIFICANT WAVE HEIGHT
    Raillard, Nicolas
    Ailliot, Pierre
    Yao, Jianfeng
    [J]. ANNALS OF APPLIED STATISTICS, 2014, 8 (01): : 622 - 647
  • [3] Bayesian Hierarchical Space–time Modeling of Earthquake Data
    Bent Natvig
    Ingunn Fride Tvete
    [J]. Methodology and Computing in Applied Probability, 2007, 9 : 89 - 114
  • [4] Monitoring schistosomiasis risk in East China over space and time using a Bayesian hierarchical modeling approach
    Hu, Yi
    Ward, Michael P.
    Xia, Congcong
    Li, Rui
    Sun, Liqian
    Lynn, Henry
    Gao, Fenghua
    Wang, Qizhi
    Zhang, Shiqing
    Xiong, Chenglong
    Zhang, Zhijie
    Jiang, Qingwu
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [5] Monitoring schistosomiasis risk in East China over space and time using a Bayesian hierarchical modeling approach
    Yi Hu
    Michael P. Ward
    Congcong Xia
    Rui Li
    Liqian Sun
    Henry Lynn
    Fenghua Gao
    Qizhi Wang
    Shiqing Zhang
    Chenglong Xiong
    Zhijie Zhang
    Qingwu Jiang
    [J]. Scientific Reports, 6
  • [6] Modeling clusters of extreme values
    Natalia M. Markovich
    [J]. Extremes, 2014, 17 : 97 - 125
  • [7] Modeling clusters of extreme values
    Markovich, Natalia M.
    [J]. EXTREMES, 2014, 17 (01) : 97 - 125
  • [8] Bayesian hierarchical space-time modeling of earthquake data
    Natvig, Bent
    Tvete, Ingunn Fride
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2007, 9 (01) : 89 - 114
  • [9] Max-stable processes for modeling extremes observed in space and time
    Richard A. Davis
    Claudia Klüppelberg
    Christina Steinkohl
    [J]. Journal of the Korean Statistical Society, 2013, 42 : 399 - 414
  • [10] Max-stable processes for modeling extremes observed in space and time
    Davis, Richard A.
    Klueppelberg, Claudia
    Steinkohl, Christina
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 399 - 414