A-optimal design;
Group Lasso;
Optimization;
First Order Methods;
62K05;
90C25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that the A-optimal design optimization problem over m design points in Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^n$$\end{document} is equivalent to minimizing a quadratic function plus a group lasso sparsity inducing term over n×m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\times m$$\end{document} real matrices. This observation allows to describe several new algorithms for A-optimal design based on splitting and block coordinate decomposition. These techniques are well known and proved powerful to treat large scale problems in machine learning and signal processing communities. The proposed algorithms come with rigorous convergence guarantees and convergence rate estimate stemming from the optimization literature. Performances are illustrated on synthetic benchmarks and compared to existing methods for solving the optimal design problem.