Fuzzy n-ary hypergroups related to fuzzy points

被引:0
|
作者
O. Kazancı
B. Davvaz
S. Yamak
机构
[1] Karadeniz Technical University,Department of Mathematics
[2] Yazd University,Department of Mathematics
来源
关键词
Hypergroup; -ary hypergroup; -ary sub-hypergroup; Fuzzy ; -ary sub-hypergroup; -fuzzy ; -ary sub-hypergroup;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce and study a new sort of fuzzy n-ary sub-hypergroups of an n-ary hypergroup, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in,\in \vee q)$$\end{document}-fuzzy n-ary sub-hypergroup. By using this new idea, we consider the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in,\in\vee q)$$\end{document}-fuzzy n-ary sub-hypergroup of a n-ary hypergroup. This newly defined \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in,\in \vee q)$$\end{document}-fuzzy n-ary sub-hypergroup is a generalization of the usual fuzzy n-ary sub-hypergroup. Finally, we consider the concept of implication-based fuzzy n-ary sub-hypergroup in an n-ary hypergroup and discuss the relations between them, in particular, the implication operators in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pounds$$\end{document}ukasiewicz system of continuous-valued logic are discussed.
引用
收藏
页码:649 / 655
页数:6
相关论文
共 50 条
  • [1] Fuzzy n-ary hypergroups related to fuzzy points
    Kazanci, O.
    Davvaz, B.
    Yamak, S.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2010, 19 (05): : 649 - 655
  • [2] Fuzzy n-ary hypergroups
    Davvaz, B.
    Corsini, R.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2007, 18 (04) : 377 - 382
  • [3] ON n-ARY HYPERGROUPS AND FUZZY n-ARY HOMOMORPHISM
    Kazanci, O.
    Yamak, S.
    Davvaz, B.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2011, 8 (01): : 65 - 76
  • [4] Fuzzy join n-ary spaces and fuzzy canonical n-ary hypergroups
    Leoreanu-Fotea, Violeta
    [J]. FUZZY SETS AND SYSTEMS, 2010, 161 (24) : 3166 - 3173
  • [5] Intuitionistic Fuzzy n-ary Hypergroups
    Davvaz, B.
    Leoreanu-Fotea, V.
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2010, 16 (1-2) : 87 - 103
  • [6] Fuzzy n-ary polygroups related to fuzzy points
    Kazanci, O.
    Davvaz, B.
    Yamak, S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (07) : 1466 - 1474
  • [7] Interval-valued fuzzy n-ary subhypergroups of n-ary hypergroups
    Davvaz, B.
    Kazanci, Osman
    Yamak, S.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2009, 18 (08): : 903 - 911
  • [8] Interval-valued fuzzy n-ary subhypergroups of n-ary hypergroups
    B. Davvaz
    Osman Kazancı
    S. Yamak
    [J]. Neural Computing and Applications, 2009, 18 : 903 - 911
  • [9] On ideals of fuzzy points n-ary semigroups
    Solano, John Patrick Fulgencio
    Suebsung, Sudaporn
    Chinram, Ronnason
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2018, 13 (02): : 179 - 186
  • [10] Fuzzy roughness of n-ary hypergroups based on a complete residuated lattice
    Yunqiang Yin
    Jianming Zhan
    P. Corsini
    [J]. Neural Computing and Applications, 2011, 20 : 41 - 57