Accelerated intuitionistic fuzzy clustering for image segmentation

被引:0
|
作者
Dante Mújica-Vargas
José de Jesús Rubio
机构
[1] Tecnológico Nacional de México/CENIDET,Sección de Estudios de Posgrado e Investigación, Esime, Azcapotzalco
[2] Instituto Politécnico Nacional,undefined
来源
关键词
Color image segmentation; Intuitionistic fuzzy C-means clustering; Algorithmic acceleration; Downsampled image;
D O I
暂无
中图分类号
学科分类号
摘要
To improve processing time of the intuitionistic fuzzy C-means during color image segmentation, this paper proposes a scheme based on two clustering stages. In the first, a downsampled image is used to isolate the dominant color of the images by means of centroids calculating. Later, in the second stage these centroids are used during the image segmentation. With these two processes, an algorithmic acceleration of approximately eleven times can be guaranteed compared to the conventional algorithm. The effectiveness of this proposal is verified by experiments on the natural color images of datasets such as BSDS500 Alpert et al. Segmentation Evaluation Database, Sky dataset, Stony Bro- ok University Shadow and ISIC 2018. The quality of the segmentation was quantified using metrics and compared with other current methods of the state of the art. The results obtained show a superior performance of the proposed method both in segmentation and in processing time.
引用
收藏
页码:1845 / 1852
页数:7
相关论文
共 50 条
  • [1] Accelerated intuitionistic fuzzy clustering for image segmentation
    Mujica-Vargas, Dante
    Rubio, Jose de Jesus
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (08) : 1845 - 1852
  • [2] Robust credibilistic intuitionistic fuzzy clustering for image segmentation
    Chengmao Wu
    Xiaoqiang Yang
    [J]. Soft Computing, 2020, 24 : 10903 - 10932
  • [3] Robust credibilistic intuitionistic fuzzy clustering for image segmentation
    Wu, Chengmao
    Yang, Xiaoqiang
    [J]. SOFT COMPUTING, 2020, 24 (14) : 10903 - 10932
  • [4] Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation
    Dhirendra Kumar
    R. K. Agrawal
    Hanuman Verma
    [J]. Soft Computing, 2020, 24 : 4003 - 4026
  • [5] A Modified Intuitionistic Fuzzy Clustering Algorithm for Medical Image Segmentation
    Kumar, S. V. Aruna
    Harish, B. S.
    [J]. JOURNAL OF INTELLIGENT SYSTEMS, 2018, 27 (04) : 593 - 607
  • [6] Intuitionistic fuzzy entropy clustering algorithm for infrared image segmentation
    Zhou, Xiaoguang
    Zhao, Renhou
    Yu, Fengquan
    Tian, Huaiying
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (03) : 1831 - 1840
  • [7] Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation
    Kumar, Dhirendra
    Agrawal, R. K.
    Verma, Hanuman
    [J]. SOFT COMPUTING, 2020, 24 (06) : 4003 - 4026
  • [8] Intuitionistic fuzzy C means clustering in medical image segmentation
    Chaira, T.
    Ray, A. K.
    Salvetti, O.
    [J]. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION, 2007, : 226 - +
  • [9] Redescending intuitionistic fuzzy clustering to brain magnetic resonance image segmentation
    Mujica-Vargas, Dante
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 1097 - 1108
  • [10] Image Segmentation using Spatial Intuitionistic Fuzzy C Means Clustering
    Tripathy, B. K.
    Basu, Avik
    Govel, Sahil
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 878 - 882