Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses

被引:0
|
作者
Aoxing Liu
Mogens Sandø Lund
Didier Boichard
Emre Karaman
Bernt Guldbrandtsen
Sebastien Fritz
Gert Pedersen Aamand
Ulrik Sander Nielsen
Goutam Sahana
Yachun Wang
Guosheng Su
机构
[1] Aarhus University,Center for Quantitative Genetics and Genomics
[2] Université Paris-Saclay,INRAE, AgroParisTech, GABI
[3] Nordic Cattle Genetic Evaluation,Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology
[4] Seges,undefined
[5] China Agricultural University,undefined
[6] ALLICE,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses
    Liu, Aoxing
    Lund, Mogens Sando
    Boichard, Didier
    Karaman, Emre
    Guldbrandtsen, Bernt
    Fritz, Sebastien
    Aamand, Gert Pedersen
    Nielsen, Ulrik Sander
    Sahana, Goutam
    Wang, Yachun
    Su, Guosheng
    GENETICS SELECTION EVOLUTION, 2020, 52 (01)
  • [2] Genomic prediction using pooled data in a single-step genomic best linear unbiased prediction framework
    Baller, Johnna L.
    Kachman, Stephen D.
    Kuehn, Larry A.
    Spangler, Matthew L.
    JOURNAL OF ANIMAL SCIENCE, 2020, 98 (06)
  • [3] The impact of truncating data on the predictive ability for single-step genomic best linear unbiased prediction
    Howard, Jeremy T.
    Rathje, Tom A.
    Bruns, Caitlyn E.
    Wilson-Wells, Danielle F.
    Kachman, Stephen D.
    Spangler, Matthew L.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2018, 135 (04) : 251 - 262
  • [4] Solving efficiently large single-step genomic best linear unbiased prediction models
    Stranden, I.
    Matilainen, K.
    Aamand, G. P.
    Mantysaari, E. A.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2017, 134 (03) : 264 - 274
  • [5] Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction
    Legarra, A.
    Ducrocq, V.
    JOURNAL OF DAIRY SCIENCE, 2012, 95 (08) : 4629 - 4645
  • [6] Weighted Single-Step Genomic Best Linear Unbiased Prediction Method Application for Assessing Pigs on Meat Productivity and Reproduction Traits
    Kabanov, Artem
    Melnikova, Ekaterina
    Nikitin, Sergey
    Somova, Maria
    Fomenko, Oleg
    Volkova, Valeria
    Kostyunina, Olga
    Karpushkina, Tatiana
    Martynova, Elena
    Trebunskikh, Elena
    ANIMALS, 2022, 12 (13):
  • [7] Detecting effective starting point of genomic selection by divergent trends from best linear unbiased prediction and single-step genomic best linear unbiased prediction in pigs, beef cattle, and broilers
    Abdollahi-Arpanahi, Rostam
    Lourenco, Daniela
    Misztal, Ignacy
    JOURNAL OF ANIMAL SCIENCE, 2021, 99 (09)
  • [8] The impact of selective genotyping on the response to selection using single-step genomic best linear unbiased prediction
    Howard, Jeremy T.
    Rathje, Tom A.
    Bruns, Caitlyn E.
    Wilson-Wells, Danielle F.
    Kachman, Stephen D.
    Spangler, Matthew L.
    JOURNAL OF ANIMAL SCIENCE, 2018, 96 (11) : 4532 - 4542
  • [9] Genomic selection through single-step genomic best linear unbiased prediction improves the accuracy of evaluation in Hanwoo cattle
    Park, Mi Na
    Alam, Mahboob
    Kim, Sidong
    Park, Byoungho
    Lee, Seung Hwan
    Lee, Sung Soo
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2020, 33 (10): : 1544 - 1557
  • [10] Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants
    Fragomeni, B. O.
    Lourenco, D. A. L.
    Legarra, A.
    VanRaden, P. M.
    Misztal, I
    JOURNAL OF DAIRY SCIENCE, 2019, 102 (11) : 10012 - 10019