Ultraviolet Finite Quantum Field Theory on Quantum Spacetime

被引:0
|
作者
D. Bahns
S. Doplicher
K. Fredenhagen
G. Piacitelli
机构
[1] II. Institut für Theoretische Physik,
[2] Universität Hamburg,undefined
[3] Luruper Chaussee 149,undefined
[4] 22761 Hamburg,undefined
[5] Germany. E-mail: dorothea.bahns@desy.de; klaus.fredenhagen@desy.de,undefined
[6] Dipartimento di Matematica,undefined
[7] Università di Roma ``La Sapienza'',undefined
[8] P.le Aldo Moro 2,undefined
[9] 00185 Roma,undefined
[10] Italy. E-mail: dopliche@mat.uniroma1.it; piacitel@mat.uniroma1.it,undefined
来源
关键词
Quantum Field Theory; Optimal Localization; Transfer Matrix; Space Time; Planck Scale;
D O I
暂无
中图分类号
学科分类号
摘要
 We discuss a formulation of quantum field theory on quantum space time where the perturbation expansion of the S-matrix is term by term ultraviolet finite.
引用
收藏
页码:221 / 241
页数:20
相关论文
共 50 条
  • [1] Ultraviolet finite quantum field theory on quantum spacetime
    Bahns, D
    Doplicher, S
    Fredenhagen, K
    Piacitelli, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (1-2) : 221 - 241
  • [2] Perturbative Algebraic Quantum Field Theory on Quantum Spacetime: Adiabatic and Ultraviolet Convergence
    Sergio Doplicher
    Gerardo Morsella
    Nicola Pinamonti
    [J]. Communications in Mathematical Physics, 2020, 379 : 1035 - 1076
  • [3] Perturbative Algebraic Quantum Field Theory on Quantum Spacetime: Adiabatic and Ultraviolet Convergence
    Doplicher, Sergio
    Morsella, Gerardo
    Pinamonti, Nicola
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (03) : 1035 - 1076
  • [4] Quantum field theory in curved spacetime
    Hollands, Stefan
    [J]. UNIVERSALITY AND RENORMALIZATION: FROM STOCHASTIC EVOLUTION TO RENORMALIZATION OF QUANTUM FIELDS, 2007, 50 : 131 - 149
  • [5] QUANTUM-FIELD THEORY IN CURVED SPACETIME
    KAY, BS
    [J]. DIFFERENTIAL GEOMETRICAL METHODS IN THEORETICAL PHYSICS, 1988, 250 : 373 - 393
  • [6] Dirac quantum field theory in Rindler spacetime
    Jianyang Z.
    Zhijian L.
    [J]. International Journal of Theoretical Physics, 1999, 38 (2) : 575 - 584
  • [7] Axiomatic Quantum Field Theory in Curved Spacetime
    Stefan Hollands
    Robert M. Wald
    [J]. Communications in Mathematical Physics, 2010, 293 : 85 - 125
  • [8] Dirac quantum field theory in Rindler spacetime
    Zhu, JY
    Luo, ZJ
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (02) : 575 - 584
  • [9] Axiomatic Quantum Field Theory in Curved Spacetime
    Hollands, Stefan
    Wald, Robert M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 293 (01) : 85 - 125
  • [10] Superconformal quantum field theory in curved spacetime
    de Medeiros, Paul
    Hollands, Stefan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (17)