Gravitational wave detectors with broadband high frequency sensitivity

被引:0
|
作者
Michael A. Page
Maxim Goryachev
Haixing Miao
Yanbei Chen
Yiqiu Ma
David Mason
Massimiliano Rossi
Carl D. Blair
Li Ju
David G. Blair
Albert Schliesser
Michael E. Tobar
Chunnong Zhao
机构
[1] University of Western Australia,Australian Research Council Centre of Excellence for Gravitational Wave Discovery
[2] National Astronomical Observatory of Japan,Gravitational Waves Science Project
[3] University of Western Australia,Australian Research Council Centre of Excellence for Engineered Quantum Systems
[4] University of Birmingham,Astrophysics and Space Research Group
[5] California Institute of Technology,Theoretical Astrophysics
[6] Huazhong University of Science and Technology,Centre for Gravitational Experiment, School of Physics
[7] Yale University,Yale Quantum Institute
[8] University of Copenhagen,Niels Bohr Institute
[9] University of Copenhagen,Denmark National Research Foundation Centre of Excellence for Hybrid Quantum Networks
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Gravitational waves from the neutron star coalescence GW170817 were observed from the inspiral, but not the high frequency postmerger nuclear matter motion. Optomechanical white light signal recycling has been proposed for achieving broadband sensitivity in gravitational wave detectors, but has been reliant on development of suitable ultra-low loss mechanical components. Here we show demonstrated optomechanical resonators that meet loss requirements for a white light signal recycling interferometer with strain sensitivity below 10−24 Hz−1/2 at a few kHz. Experimental data for two resonators are combined with analytic models of interferometers similar to LIGO to demonstrate enhancement across a broader band of frequencies versus dual-recycled Fabry-Perot Michelson detectors. Candidate resonators are a silicon nitride membrane acoustically isolated by a phononic crystal, and a single-crystal quartz acoustic cavity. Optical power requirements favour the membrane resonator, while thermal noise performance favours the quartz resonator. Both could be implemented as add-on components to existing detectors.
引用
收藏
相关论文
共 50 条
  • [1] Gravitational wave detectors with broadband high frequency sensitivity
    Page, Michael A.
    Goryachev, Maxim
    Miao, Haixing
    Chen, Yanbei
    Ma, Yiqiu
    Mason, David
    Rossi, Massimiliano
    Blair, Carl D.
    Ju, Li
    Blair, David G.
    Schliesser, Albert
    Tobar, Michael E.
    Zhao, Chunnong
    [J]. COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [2] Enhancing high frequency sensitivity of gravitational wave detectors with a Sagnac interferometer
    Zhang, Teng
    Martynov, Denis
    Miao, Haixing
    Danilishin, Stefan
    [J]. PHYSICAL REVIEW D, 2021, 104 (12)
  • [3] Boosting the sensitivity of high-frequency gravitational wave detectors using PT-symmetry
    Wang, Chuming
    Zhao, Chunnong
    Li, Xiang
    Zhou, Enping
    Miao, Haixing
    Chen, Yanbei
    Ma, Yiqiu
    [J]. PHYSICAL REVIEW D, 2022, 106 (08)
  • [4] Broadband Faraday isolator for gravitational wave detectors
    Parfenov, VA
    Parfenov, VA
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (07) : 1865 - 1870
  • [5] High frequency band sensitivity of the gravitational wave interferometer
    Kolosnitzyn, N. I.
    Rudenko, V. N.
    [J]. 14TH GRAVITATIONAL WAVES DATA ANALYSIS WORKSHOP, 2010, 243
  • [6] On the sensitivity of gravitational wave resonant bar detectors
    Sisto, R
    Moleti, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (04): : 625 - 639
  • [7] Gravitational wave detectors - Squeezing up the sensitivity
    Schnabel, Roman
    [J]. NATURE PHYSICS, 2008, 4 (06) : 440 - 441
  • [8] Potential of Radio Telescopes as High-Frequency Gravitational Wave Detectors
    Domcke, Valerie
    Garcia-Cely, Camilo
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (02)
  • [9] Exploring the sensitivity of next generation gravitational wave detectors
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Ackley, K.
    Adams, C.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Allen, B.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arun, K. G.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P. T.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Bartos, I.
    Bassiri, R.
    Batch, J. C.
    Baune, C.
    Bell, A. S.
    Berger, B. K.
    Bergmann, G.
    Berry, C. P. L.
    Betzwieser, J.
    Bhagwat, S.
    Bhandare, R.
    Bilenko, I. A.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (04)
  • [10] Laser frequency stabilization for spaceborne gravitational wave detectors
    McNamara, PW
    Ward, H
    Hough, J
    Robertson, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (06) : 1543 - 1547