Finite difference scheme for two-dimensional periodic nonlinear Schrödinger equations

被引:0
|
作者
Younghun Hong
Chulkwang Kwak
Shohei Nakamura
Changhun Yang
机构
[1] Chung-Ang University,Department of Mathematics
[2] Ewha Womans University,Department of Mathematics
[3] Tokyo Metropolitan University,Department of Mathematics and Information Sciences
[4] Korea Institute for Advanced Study,School of Mathematics
[5] Jeonbuk National University,Institute of Pure and Applied Mathematics
来源
关键词
Periodic nonlinear Schrödinger equation; Uniform Strichartz estimate; Continuum limit; 35Q55; 81T27; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
A nonlinear Schrödinger equation (NLS) on a periodic box can be discretized as a discrete nonlinear Schrödinger equation (DNLS) on a periodic cubic lattice, which is a system of finitely many ordinary differential equations. We show that in two spatial dimensions, solutions to the DNLS converge strongly in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} to those of the NLS as the grid size h>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h>0$$\end{document} approaches zero. As a result, the effectiveness of the finite difference method (FDM) is justified for the two-dimensional periodic NLS.
引用
收藏
页码:391 / 418
页数:27
相关论文
共 50 条