Shock Capturing Artificial Dissipation for High-Order Finite Difference Schemes

被引:0
|
作者
Magnus Svärd
Siddhartha Mishra
机构
[1] University of Oslo,Centre of Mathematics for Applications
来源
关键词
Finite difference schemes; Conservation laws; Artificial diffusion; Entropy stability; Limiter;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2nd-, 4th-, 6th- and 8th-order accurate finite difference schemes approximating systems of conservation laws. Our goal is to utilize the high order of accuracy of the schemes for approximating complicated flow structures and add suitable diffusion operators to capture shocks.
引用
收藏
页码:454 / 484
页数:30
相关论文
共 50 条
  • [1] Shock Capturing Artificial Dissipation for High-Order Finite Difference Schemes
    Svard, Magnus
    Mishra, Siddhartha
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (03) : 454 - 484
  • [2] On Convergence of High Order Shock Capturing Difference Schemes
    Ostapenko, V.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 413 - 425
  • [3] High-order shock capturing schemes for turbulence calculations
    Lo, S. -C.
    Blaisdell, G. A.
    Lyrintzis, A. S.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (05) : 473 - 498
  • [4] On construction of shock-capturing boundary closures for high-order finite difference method
    Qin, Jiaxian
    Chen, Yaming
    Lin, Yu
    Deng, Xiaogang
    [J]. COMPUTERS & FLUIDS, 2023, 255
  • [5] High-order finite difference schemes for incompressible flows
    Fadel, H.
    Agouzoul, M.
    Jimack, P. K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (09) : 1050 - 1070
  • [6] A shock-detecting sensor for filtering of high-order compact finite difference schemes
    Mahmoodi Darian, Hossein
    Esfahanian, Vahid
    Hejranfar, Kazem
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) : 494 - 514
  • [7] A variable high-order shock-capturing finite difference method with GP-WENO
    Reyes, Adam
    Lee, Dongwook
    Graziani, Carlo
    Tzeferacos, Petros
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 381 : 189 - 217
  • [8] A high-order shock capturing discontinuous Galerkin-finite difference hybrid method for GRMHD
    Deppe, Nils
    Hebert, Francois
    Kidder, Lawrence E.
    Teukolsky, Saul A.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (19)
  • [9] A comparison of higher-order finite-difference shock capturing schemes
    Brehm, Christoph
    Barad, Michael F.
    Housman, Jeffrey A.
    Kiris, Cetin C.
    [J]. COMPUTERS & FLUIDS, 2015, 122 : 184 - 208
  • [10] A shock capturing artificial viscosity scheme in consistent with the compact high-order finite volume methods
    Wu, Zhuohang
    Ren, Yu-Xin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 516