Complete Asymptotic Expansion for Generalized Favard Operators

被引:0
|
作者
Ulrich Abel
Paul L. Butzer
机构
[1] Technische Hochschule Mittelhessen,Fachbereich MND
[2] RWTH Aachen University,Lehrstuhl A für Mathematik
来源
关键词
Approximation by positive operators; Rate of convergence; Degree of approximation; Simultaneous approximation; Asymptotic expansions; 41A36; 41A25; 41A28; 41A60;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we consider a generalization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{n,\sigma_{n}} $\end{document} of the Favard operators and study the local rate of convergence for smooth functions. As a main result we derive the complete asymptotic expansion for the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( F_{n,\sigma _{n}}f)( x)$\end{document} as n tends to infinity. Furthermore, we consider a truncated version of these operators. Finally, all results were proved for simultaneous approximation.
引用
收藏
页码:73 / 88
页数:15
相关论文
共 50 条