On finite groups with non-nilpotent subgroups

被引:0
|
作者
Jiakuan Lu
Wei Meng
机构
[1] Guangxi Normal University,School of Mathematics and Statistics
[2] Yunnan Minzu University,School of Mathematics and Computer Science
来源
关键词
Non-nilpotent subgroups; Non-normal subgroups; Solvable groups; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, let l(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)$$\end{document} denote the number of conjugacy classes of non-normal non-nilpotent subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In this paper, we show that every finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} satisfying l(G)<|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)< |\pi (G)|$$\end{document} is solvable, and for a finite non-solvable group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, l(G)=|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)=|\pi (G)|$$\end{document} if and only if G≅A5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong A_5$$\end{document} or SL(2,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,5)$$\end{document}.
引用
收藏
页码:99 / 103
页数:4
相关论文
共 50 条
  • [1] On finite groups with non-nilpotent subgroups
    Lu, Jiakuan
    Meng, Wei
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (01): : 99 - 103
  • [2] Finite groups with non-nilpotent maximal subgroups
    Jiakuan Lu
    Linna Pang
    Xianggui Zhong
    Monatshefte für Mathematik, 2013, 171 : 425 - 431
  • [3] Finite groups with non-nilpotent maximal subgroups
    Lu, Jiakuan
    Pang, Linna
    Zhong, Xianggui
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 425 - 431
  • [4] FINITE GROUPS WITH GIVEN QUANTITATIVE NON-NILPOTENT SUBGROUPS
    Shi, Jiangtao
    Zhang, Cui
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3346 - 3355
  • [5] FINITE NON-NILPOTENT GROUPS WITH SOME PRESET SYSTEMS OF NILPOTENT SUBGROUPS
    LEVISHCHENKO, SS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (01): : 35 - 37
  • [6] FINITE GROUPS WITH GIVEN QUANTITATIVE NON-NILPOTENT SUBGROUPS II
    Shi, Jiangtao
    Zhang, Cui
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4248 - 4252
  • [7] Groups isomorphic to their non-nilpotent subgroups
    Smith, H
    Wiegold, J
    GLASGOW MATHEMATICAL JOURNAL, 1998, 40 : 257 - 262
  • [8] Groups with few non-nilpotent subgroups
    Brandl, Rolf
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
  • [9] Groups with few non-nilpotent subgroups
    Smith, H
    GLASGOW MATHEMATICAL JOURNAL, 1997, 39 : 141 - 151
  • [10] Finite groups with given non-nilpotent maximal subgroups of prime index
    Yi, Xiaolan
    Jiang, Shiyang
    Kamornikov, S. F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (05)