Existence regime of symmetric and asymmetric Taylor vortices in wide-gap spherical Couette flow

被引:0
|
作者
Suhail Abbas
Li Yuan
Abdullah Shah
机构
[1] Chinese Academy of Sciences,LSEC and Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
[2] School of Mathematical Sciences,Department of Mathematics
[3] University of Chinese Academy of Sciences,undefined
[4] COMSATS Institute of Information Technology,undefined
关键词
Spherical Couette flow; Wide gap; Symmetric Taylor vortices; Asymmetric Taylor vortices;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence regime of symmetric and asymmetric Taylor vortices in wide-gap spherical Couette flow by time marching the three-dimensional incompressible Navier–Stokes equations numerically. Three wide-gap clearance ratios, β=R2-R1/R1=0.33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =\left( R_{2}-R_{1}\right) /R_{1}=0.33$$\end{document}, 0.38 and 0.42 are investigated for a range of Reynolds numbers respectively. Using the 1-vortex flow for clearance ratio β=0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =0.18$$\end{document} at Reynolds number Re=700\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=700$$\end{document} as the initial conditions and suddenly increasing β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} to the target value, we can compute Taylor vortices for the three wide gaps. For β=0.33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =0.33$$\end{document}, Taylor vortices exist in the range 450≤Re≤2050\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$450\le {Re}\le 2050$$\end{document}. With increasing Re the steady symmetric 1-vortex flow becomes steady asymmetric at Re=1850\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=1850$$\end{document}, and then become periodic at Re=2000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=2000$$\end{document}. When Re>2050\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>2050$$\end{document} the flow returns back to the steady basic flow state with no Taylor vortices. For β=0.38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =0.38$$\end{document}, Taylor vortices can exist in the range 500≤Re≤1400\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$500\le {Re}\le 1400$$\end{document}. With increasing Re, the steady symmetric 1-vortex flow become steady asymmetric at Re=1200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=1200$$\end{document}, and then the flow evolves into the steady basic flow for Re>1400\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>1400$$\end{document}. For β=0.42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =0.42$$\end{document}, Taylor vortices can exist in the range 650≤Re≤1300\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$650\le {Re}\le 1300$$\end{document}. With increasing Re, steady asymmetric Taylor vortices occur at Re=1150\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=1150$$\end{document}, and then the flow evolves into the steady basic flow for Re>1300\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>1300$$\end{document}. The present numerical results are in good agreement with available numerical and experimental results. Furthermore, the existence regime of Taylor vortices in the (β,Re)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,{Re})$$\end{document} plane for β≥0.33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 0.33$$\end{document} and the three-dimensional transition process from periodic asymmetric vortex flow to steady basic flow with increasing Re are presented for the first time.
引用
收藏
相关论文
共 50 条
  • [1] Existence regime of symmetric and asymmetric Taylor vortices in wide-gap spherical Couette flow
    Abbas, Suhail
    Yuan, Li
    Shah, Abdullah
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (03)
  • [2] THE EXISTENCE OF TAYLOR VORTICES AND WIDE-GAP INSTABILITIES IN SPHERICAL COUETTE-FLOW
    EGBERS, C
    RATH, HJ
    [J]. ACTA MECHANICA, 1995, 111 (3-4) : 125 - 140
  • [3] Time-dependent Taylor vortices in wide-gap spherical Couette flow
    Hollerbach, R
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (15) : 3132 - 3135
  • [4] The nonaxisymmetric instability of the wide-gap spherical Couette flow
    Araki, K
    Mizushima, J
    Yanase, S
    [J]. PHYSICS OF FLUIDS, 1997, 9 (04) : 1197 - 1199
  • [5] Flow instabilities in the wide-gap spherical Couette system
    Wicht, Johannes
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 738 : 184 - 221
  • [6] Routes to chaos in wide-gap spherical Couette flow
    Wulf, P
    Egbers, C
    Rath, HJ
    [J]. PHYSICS OF FLUIDS, 1999, 11 (06) : 1359 - 1372
  • [7] Simulation of spiral instabilities in wide-gap spherical Couette flow
    Abbas, Suhail
    Yuan, Li
    Shah, Abdullah
    [J]. FLUID DYNAMICS RESEARCH, 2018, 50 (02)
  • [8] A thermal convection limit of spiral state in wide-gap spherical Couette flow
    Itano, Tomoaki
    Goto, Fumitoshi
    Yoshikawa, Kazuki
    Sugihara-Seki, Masako
    [J]. PHYSICS OF FLUIDS, 2022, 34 (06)
  • [9] Triadic resonances in the wide-gap spherical Couette system
    Barik, A.
    Triana, S. A.
    Hoff, M.
    Wicht, J.
    [J]. JOURNAL OF FLUID MECHANICS, 2018, 843 : 211 - 243
  • [10] Velocity profiles, flow structures and scalings in a wide-gap turbulent Taylor-Couette flow
    Froitzheim, A.
    Merbold, S.
    Egbers, C.
    [J]. JOURNAL OF FLUID MECHANICS, 2017, 831 : 330 - 357