On perfect powers that are sum of two balancing numbers

被引:0
|
作者
Pritam Kumar Bhoi
Sudhansu Sekhar Rout
Gopal Krishna Panda
机构
[1] National Institute of Technology,Department of Mathematics
[2] National Institute of Technology,Department of Mathematics
[3] Calicut,undefined
来源
Periodica Mathematica Hungarica | 2024年 / 88卷
关键词
Diophantine equation; Linear recurrence sequence; Perfect power; Balancing number; Primary 11B37;
D O I
暂无
中图分类号
学科分类号
摘要
Let Bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_k$$\end{document} denote the k-th term of balancing sequence. In this paper we find all positive integer solutions of the Diophantine equation Bn+Bm=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n+B_m = x^q$$\end{document} in variables (m, n, x, q) under the assumption n≡m(mod2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv m \pmod 2$$\end{document}. Furthermore, we study the Diophantine equation Bn3±Bm3=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}B_n^{3}\pm B_m^{3} = x^q\end{aligned}$$\end{document}with positive integer q≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 3$$\end{document} and gcd(Bn,Bm)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (B_n, B_m) =1$$\end{document}.
引用
收藏
页码:93 / 101
页数:8
相关论文
共 50 条
  • [1] On perfect powers that are sum of two balancing numbers
    Bhoi, Pritam Kumar
    Rout, Sudhansu Sekhar
    Panda, Gopal Krishna
    PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 93 - 101
  • [2] ON PERFECT POWERS WHICH ARE SUM OR DIFFERENCE OF TWO LUCAS NUMBERS
    Siar, Z.
    Keskin, R.
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 951 - 960
  • [3] How to sum powers of balancing numbers efficiently
    Prodinger, Helmut
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (01) : 134 - 137
  • [4] PERFECT POWERS THAT ARE SUMS OF TWO POWERS OF FIBONACCI NUMBERS
    Zhang, Zhongfeng
    Togbe, Alain
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (01) : 34 - 41
  • [5] Powers of Two as Sums of Two Balancing Numbers
    Bartz, Jeremiah
    Dearden, Bruce
    Iiams, Joel
    Peterson, Julia
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 383 - 392
  • [6] Sum formulas involving powers of balancing and Lucas-balancing numbers - II
    Rayaguru, S. G.
    Panda, G. K.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (03) : 102 - 110
  • [7] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Merve Güney Duman
    Proceedings of the Indian National Science Academy, 2024, 90 : 124 - 131
  • [8] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Duman, Merve Gueney
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (01): : 124 - 131
  • [9] On perfect powers that are sums of two Fibonacci numbers
    Luca, Florian
    Patel, Vandita
    JOURNAL OF NUMBER THEORY, 2018, 189 : 90 - 96
  • [10] On perfect powers that are sums of two Pell numbers
    Aboudja, Hyacinthe
    Hernane, Mohand
    Rihane, Salah Eddine
    Togbe, Main
    PERIODICA MATHEMATICA HUNGARICA, 2021, 82 (01) : 11 - 15