The Cauchy problem for time-fractional linear nonlocal diffusion equations

被引:0
|
作者
Sen Wang
Xian-Feng Zhou
机构
[1] Anhui University,School of Mathematical Sciences
关键词
Cauchy problem; Existence and uniqueness; Asymptotic behaviour; Rescaled problems; Fractional calculus; Nonlocal diffusion problems;
D O I
暂无
中图分类号
学科分类号
摘要
This manuscript is dedicated to study the Cauchy problem for time-fractional linear nonlocal diffusion problems in the whole RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document}, including the existence and uniqueness of solutions, their asymptotic behaviour as t goes to infinity, and the analysis of the corresponding rescaled problems by rescaling the convolution kernel J in some appropriate ways. Two time-fractional models will be considered in our work, one is related to the simplest linear nonlocal diffusion operator of the form J∗u-u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J*u-u$$\end{document}, and the other is proposed as a nonlocal analogy of higher-order evolution equations.
引用
收藏
相关论文
共 50 条
  • [1] The Cauchy problem for time-fractional linear nonlocal diffusion equations
    Wang, Sen
    Zhou, Xian-Feng
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [2] CAUCHY PROBLEMS FOR THE TIME-FRACTIONAL DEGENERATE DIFFUSION EQUATIONS
    Borikhanov, M. B.
    Smadiyeva, A. G.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 117 (01): : 15 - 23
  • [3] REGULARIZATION OF CAUCHY PROBLEM FOR 2D TIME-FRACTIONAL DIFFUSION EVOLUTION EQUATIONS
    Tran Thanh Binh
    Nguyen Phuc Binh
    Bui Dinh Thang
    Le Dinh Long
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [4] Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces
    Nguyen Huy Tuan
    Vo Van Au
    Anh Tuan Nguyen
    [J]. Archiv der Mathematik, 2022, 118 : 305 - 314
  • [5] On a backward problem for inhomogeneous time-fractional diffusion equations
    Nguyen Hoang Luc
    Le Nhat Huynh
    Nguyen Huy Tuan
    Le Dinh Long
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1317 - 1333
  • [6] Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces
    Nguyen Huy Tuan
    Vo Van Au
    Anh Tuan Nguyen
    [J]. ARCHIV DER MATHEMATIK, 2022, 118 (03) : 305 - 314
  • [7] Nonlocal Cauchy problem for fractional evolution equations
    Zhou, Yong
    Jiao, Feng
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4465 - 4475
  • [8] A Nonlocal Cauchy Problem for Fractional Integrodifferential Equations
    Li, Fang
    Liang, Jin
    Lu, Tzon-Tzer
    Zhu, Huan
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] Cauchy problem for fractional diffusion equations
    Eidelman, SD
    Kochubei, AN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) : 211 - 255
  • [10] NONLOCAL INITIAL BOUNDARY VALUE PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Sadybekov, Makhmud
    Oralsyn, Gulaiym
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,