Log Mirror Symmetry and Local Mirror Symmetry

被引:0
|
作者
Nobuyoshi Takahashi
机构
[1] Department of Mathematics,
[2] Hiroshima University,undefined
[3] Higashi-Hiroshima 739-8526,undefined
[4] Japan.¶E-mail: takahasi@math.sci.hiroshima-u.ac.jp,undefined
来源
关键词
Mirror Symmetry; Small Degree; Study Mirror Symmetry; Local Mirror Symmetry; Local Mirror;
D O I
暂无
中图分类号
学科分类号
摘要
We study Mirror Symmetry of log Calabi–Yau surfaces. On one hand, we consider the number of “affine lines” of each degree in ℙ2\B, where B is a smooth cubic. On the other hand, we consider coefficients of a certain expansion of a function obtained from the integrals of dx/x∧dy/y over 2-chains whose boundaries lie on Bφ, where {Bφ} is a family of smooth cubics. Then, for small degrees, they coincide.
引用
收藏
页码:293 / 299
页数:6
相关论文
共 50 条
  • [1] Log mirror symmetry and local mirror symmetry
    Takahashi, N
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (02) : 293 - 299
  • [2] Local mirror symmetry in the tropics
    Gross, Mark
    Siebert, Bernd
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 723 - 744
  • [3] Local mirror symmetry via SYZ
    Gammage, Benjamin
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024,
  • [4] Rethinking mirror symmetry as a local duality on fields
    Hwang, Chiung
    Pasquetti, Sara
    Sacchi, Matteo
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)
  • [5] Local mirror symmetry and the sunset Feynman integral
    Bloch, Spencer
    Kerr, Matt
    Vanhove, Pierre
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 21 (06) : 1373 - 1453
  • [6] MIRROR SYMMETRY AS A GAUGE-SYMMETRY
    GIVEON, A
    WITTEN, E
    [J]. PHYSICS LETTERS B, 1994, 332 (1-2) : 44 - 50
  • [7] MIRROR SYMMETRY FOR LOG CALABI-YAU SURFACES I
    Gross, Mark
    Hacking, Paul
    Keel, Sean
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122): : 65 - 168
  • [8] Mirror symmetry for the Tate curve via tropical and log corals
    Arguz, Hulya
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (01): : 343 - 411
  • [9] A study of mirror symmetry through log mixed Hodge theory
    Usui, Sampei
    [J]. HODGE THEORY, COMPLEX GEOMETRY, AND REPRESENTATION THEORY, 2014, 608 : 285 - 311
  • [10] Homological mirror symmetry for log Calabi-Yau surfaces
    Hacking, Paul
    Keating, Ailsa
    Lutz, Wendelin
    [J]. GEOMETRY & TOPOLOGY, 2022, 26 (08) : 3747 - 3833