Bayesian model selection for a linear model with grouped covariates

被引:0
|
作者
Xiaoyi Min
Dongchu Sun
机构
[1] Yale University,Department of Biostatistics
[2] University of Missouri,Department of Statistics
[3] East China Normal University,School of Finance and Statistics
关键词
ANOVA models; Bayes factor; Consistency; Marginal likelihood; Zellner’s ; -prior;
D O I
暂无
中图分类号
学科分类号
摘要
Model selection for normal linear regression models with grouped covariates is considered under a class of Zellner’s g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-priors. The marginal likelihood function is derived under the proposed priors, and a simplified closed-form expression is given assuming the commutativity of the projection matrices from the design matrices. As illustration, the marginal likelihood functions of the balanced q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-way ANOVA models, either solely with main effects or with all interaction effects, are calculated using the closed-form expression. The performance of the proposed priors in model comparison problems is demonstrated by simulation studies on two-way ANOVA models and by two real data studies.
引用
收藏
页码:877 / 903
页数:26
相关论文
共 50 条
  • [1] Bayesian model selection for a linear model with grouped covariates
    Min, Xiaoyi
    Sun, Dongchu
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (04) : 877 - 903
  • [2] Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters
    Afzal, Arfan Raheen
    Yang, Jing
    Lu, Xuewen
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (02) : 829 - 855
  • [3] Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters
    Arfan Raheen Afzal
    Jing Yang
    Xuewen Lu
    [J]. Computational Statistics, 2021, 36 : 829 - 855
  • [4] Bayesian variable selection for the Cox regression model with missing covariates
    Joseph G. Ibrahim
    Ming-Hui Chen
    Sungduk Kim
    [J]. Lifetime Data Analysis, 2008, 14 : 496 - 520
  • [5] Linear Model Selection When Covariates Contain Errors
    Zhang, Xinyu
    Wang, Haiying
    Ma, Yanyuan
    Carroll, Raymond J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (520) : 1553 - 1561
  • [6] Bayesian variable selection for the Cox regression model with missing covariates
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    Kim, Sungduk
    [J]. LIFETIME DATA ANALYSIS, 2008, 14 (04) : 496 - 520
  • [7] Bayesian analysis of the linear reaction norm model with unknown covariates
    Su, G.
    Madsen, P.
    Lund, M. S.
    Sorensen, D.
    Korsgaard, I. R.
    Jensen, J.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2006, 84 (07) : 1651 - 1657
  • [8] Performances of Bayesian model selection criteria for generalized linear models with non-ignorably missing covariates
    Kalaylioglu, Zeynep
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (08) : 1670 - 1691
  • [9] Variable Selection for Generalized Linear Model with Highly Correlated Covariates
    Yue, Li Li
    Wang, Wei Tao
    Li, Gao Rong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (06) : 1458 - 1480
  • [10] Model selection of generalized partially linear models with missing covariates
    Fu, Ying-Zi
    Chen, Xue-Dong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (01) : 126 - 138