Exact solutions for logistic reaction–diffusion equations in biology

被引:0
|
作者
P. Broadbridge
B. H. Bradshaw-Hajek
机构
[1] La Trobe University,Department of Mathematics and Statistics
[2] University of South Australia,Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences
关键词
35K57; 35K55; 92D25; 92D99; Nonclassical symmetries; Reaction–diffusion equations; Fisher equation; Fitzhugh–Nagumo equation; KPP equation; Exact solutions;
D O I
暂无
中图分类号
学科分类号
摘要
Reaction–diffusion equations with a nonlinear source have been widely used to model various systems, with particular application to biology. Here, we provide a solution technique for these types of equations in N-dimensions. The nonclassical symmetry method leads to a single relationship between the nonlinear diffusion coefficient and the nonlinear reaction term; the subsequent solutions for the Kirchhoff variable are exponential in time (either growth or decay) and satisfy the linear Helmholtz equation in space. Example solutions are given in two dimensions for particular parameter sets for both quadratic and cubic reaction terms.
引用
收藏
相关论文
共 50 条
  • [1] Exact solutions for logistic reaction-diffusion equations in biology
    Broadbridge, P.
    Bradshaw-Hajek, B. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [2] Exact solutions of nonlinear diffusion-reaction equations
    Malik, A.
    Chand, F.
    Kumar, H.
    Mishra, S. C.
    INDIAN JOURNAL OF PHYSICS, 2012, 86 (02) : 129 - 136
  • [3] Exact solutions of nonlinear diffusion-reaction equations
    A. Malik
    F. Chand
    H. Kumar
    S. C. Mishra
    Indian Journal of Physics, 2012, 86 : 129 - 136
  • [4] Exact solutions of certain nonlinear chemotaxis diffusion reaction equations
    AJAY MISHRA
    R S KAUSHAL
    AWADHESH PRASAD
    Pramana, 2016, 86 : 1043 - 1053
  • [5] New exact solutions of nonlinear reaction-diffusion equations
    Cherniha, RM
    REPORTS ON MATHEMATICAL PHYSICS, 1998, 41 (03) : 333 - 349
  • [6] ON EXACT-SOLUTIONS OF A CLASS OF REACTION DIFFUSION-EQUATIONS
    SLEEMAN, BD
    TUMA, E
    IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 33 (02) : 153 - 168
  • [7] Exact number of solutions of stationary reaction-diffusion equations
    Iturriaga, Leonelo
    Sanchez, Justino
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (04) : 1250 - 1258
  • [8] Exact and Approximate Solutions of Reaction-Diffusion-Convection Equations
    Rocha, E. M.
    Rodrigues, M. M.
    MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 304 - 313
  • [9] Exact solutions of certain nonlinear chemotaxis diffusion reaction equations
    Mishra, Ajay
    Kaushal, R. S.
    Prasad, Awadhesh
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (05): : 1043 - 1053
  • [10] Exact analytical solutions for nonlinear reaction-diffusion equations
    Liu, CP
    CHAOS SOLITONS & FRACTALS, 2003, 18 (01) : 97 - 105