Traveling wave solutions of a nonlinear reaction–advection equation

被引:0
|
作者
Konstadia Lika
Thomas G. Hallam
机构
[1]  Department of Ecology,
[2] Evolution and Marine Biology,undefined
[3] University of California,undefined
[4] Santa Barbara,undefined
[5] CA 93106,undefined
[6] USA. e-mail: lika@lifesci.ucsb.edu,undefined
[7]  Department of Ecology and Evolutionary Biology,undefined
[8] 569 Dabney Hall,undefined
[9] University of Tennessee,undefined
[10] Knoxville,undefined
[11] TN 37996-1670,undefined
[12] USA. e-mail: hallam@tiem.utk.edu,undefined
[13]  Current address: Department of Biology,undefined
[14] P.O. Box 2208,undefined
[15] University of Crete,undefined
[16] GR-71409 Iraklion,undefined
[17] Crete,undefined
[18] Greece,undefined
来源
关键词
Key words: Nonlinear advective processes; Traveling waves; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
 We establish the existence of traveling wave solutions for a nonlinear partial differential equation that models a logistically growing population whose movement is governed by an advective process. Conditions are presented for which traveling wave solutions exist and for which they are stable to small semi-finite domain perturbations. The wave is of mathematical interest because its behavior is determined by a singular differential equation and those with small speed of propagation steepen into a shock-like solutions. Finally, we indicate that the smoothing presence of diffusion allows wave persistence when an advective slow moving wave may collapse.
引用
收藏
页码:346 / 358
页数:12
相关论文
共 50 条
  • [1] Traveling wave solutions of a nonlinear reaction-advection equation
    Lika, K
    Hallam, TG
    JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (04) : 346 - 358
  • [2] Traveling wave solutions of the nonlinear Schrodinger equation
    Akbari-Moghanjoughi, M.
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [3] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735
  • [4] Simple numerical method to study traveling-wave solutions of a diffusive problem with nonlinear advection and reaction
    Macias-Diaz, Jorge
    Villa, J.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1694 - 1708
  • [5] Exact traveling wave solutions to the nonlinear Schrodinger equation
    Abdoulkary, Saidou
    Mohamadou, Alidou
    Beda, Tibi
    Gambo, Betchewe
    Doka, Serge Y.
    Alim
    Mahamoudou, Aboubakar
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 109 - 115
  • [6] Traveling wave solutions to a reaction-diffusion equation
    Feng, Zhaosheng
    Zheng, Shenzhou
    Gao, David Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 756 - 773
  • [7] Traveling wave solutions to a reaction-diffusion equation
    Zhaosheng Feng
    Shenzhou Zheng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 756 - 773
  • [8] Bifurcation of traveling wave solutions of the perturbed nonlinear Schrodinger equation
    Cheng, Yonghui
    Song, Ming
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [9] Nonlinear flexural wave equation and exact traveling solutions in beams
    Liu, Zhi-fang
    Wang, Tie-feng
    Zhang, Shan-yuan
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 637 - 643
  • [10] TRAVELING WAVE SOLUTIONS OF A HIGHLY NONLINEAR SHALLOW WATER EQUATION
    Geyer, Anna
    Quirchmayr, Ronald
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) : 1567 - 1604