In this study, we introduce a new family of discrete multiple orthogonal polynomials, namely ω-multiple Meixner polynomials of the first kind, where ω is a positive real number. Some structural properties of this family, such as the raising operator, Rodrigue’s type formula and an explicit representation are derived. The generating function for ω-multiple Meixner polynomials of the first kind is obtained and by use of this generating function we find several consequences for these polynomials. One of them is a lowering operator which will be helpful for obtaining a difference equation. We give the proof of the lowering operator by use of new technique which is a more elementary proof than the proof of Lee in (J. Approx. Theory 150:132–152, 2008). By combining the lowering operator with the raising operator we obtain the difference equation which has the ω-multiple Meixner polynomials of the first kind as a solution. As a corollary we give a third order difference equation for the ω-multiple Meixner polynomials of the first kind. Also it is shown that, for the special case ω=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\omega = 1$\end{document}, the obtained results coincide with the existing results for multiple Meixner polynomials of the first kind. In the last section as an illustrative example we consider the special case when ω=1/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\omega =1/2$\end{document} and, for the 1/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$1/2$\end{document}-multiple Meixner polynomials of the first kind, we state the corresponding result for the main theorems.