A note on the minimum number of choosability of planar graphs

被引:0
|
作者
Huijuan Wang
Lidong Wu
Xin Zhang
Weili Wu
Bin Liu
机构
[1] Qingdao University,College of Mathematics
[2] University of Texas at Tyler,Department of Computer Science
[3] Xidian University,School of Mathematics and Statistics
[4] Taiyuan University of Technology,College of Computer Science and Technology
[5] University of Texas at Dallas,Department of Computer Science
[6] Ocean University of China,Department of Mathematics
来源
关键词
Choosability; Planar graph; Cycle; List edge coloring;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of minimum number of choosability of graphs was first introduced by Vizing. It appears in some practical problems when concerning frequency assignment. In this paper, we study two important list coloring, list edge coloring and list total coloring. We prove that χl′(G)=Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{l}(G)=\varDelta $$\end{document} and χl′′(G)=Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ''_{l}(G)=\varDelta +1$$\end{document} for planar graphs with Δ≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \ge 8$$\end{document} and without adjacent 4-cycles.
引用
收藏
页码:1013 / 1022
页数:9
相关论文
共 50 条
  • [1] A note on the minimum number of choosability of planar graphs
    Wang, Huijuan
    Wu, Lidong
    Zhang, Xin
    Wu, Weili
    Liu, Bin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1013 - 1022
  • [2] Minimum choosability of planar graphs
    Huijuan Wang
    Bin Liu
    Ling Gai
    Hongwei Du
    Jianliang Wu
    Journal of Combinatorial Optimization, 2018, 36 : 13 - 22
  • [3] Minimum choosability of planar graphs
    Wang, Huijuan
    Liu, Bin
    Gai, Ling
    Du, Hongwei
    Wu, Jianliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 13 - 22
  • [4] A note on adaptable choosability and choosability with separation of planar graphs
    Casselgren, Carl Johan
    Granholmt, Jonas B.
    Raspaud, André
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 101 - 109
  • [5] A note on choosability with separation for planar graphs
    Skrekovski, R
    ARS COMBINATORIA, 2001, 58 : 169 - 174
  • [6] A note on 3-choosability of planar graphs
    Wang, Yingqian
    Lu, Huajing
    Chen, Ming
    INFORMATION PROCESSING LETTERS, 2008, 105 (05) : 206 - 211
  • [7] A Note on Edge Choosability and Degeneracy of Planar Graphs
    Wu, Baoyindureng
    An, Xinhui
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2009, 5573 : 249 - 257
  • [8] Choosability of planar graphs
    Institut für Mathematik, TU Ilmenau, 98684 Ilmenau, Germany
    Discrete Math, 1-3 (457-460):
  • [9] Choosability of planar graphs
    Voigt, M
    DISCRETE MATHEMATICS, 1996, 150 (1-3) : 457 - 460
  • [10] A note on the acyclic 3-choosability of some planar graphs
    Hocquard, Herve
    Montassier, Mickael
    Raspaud, Andre
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (10) : 1104 - 1110