The Fourth-Order Symmetry Energy of Finite Nuclei

被引:0
|
作者
J. M. Dong
W. Zuo
J. Z. Gu
机构
[1] Chinese Academy of Sciences,Institute of Modern Physics
[2] University of Chinese Academy of Sciences,School of Physics
[3] China Institute of Atomic Energy,undefined
来源
Physics of Atomic Nuclei | 2018年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The fourth-order symmetry energy Esym,4(A) of heavy nuclei is investigated based on the Skyrme energy density functional in combination with a local density approximation. Unlike some previous works, in our method, the interferences from the other energy terms are removed since it is completely isolated from the rest of energy terms. The calculated Esym,4(A) is much less than that extracted from nuclear masses. The underlying reason for the big difference is discussed. The Brueckner theory also gives a small fourth-order symmetry energy coefficient of nuclear matter, which is also different from recent conclusions with another methods.
引用
收藏
页码:283 / 287
页数:4
相关论文
共 50 条
  • [1] The Fourth-Order Symmetry Energy of Finite Nuclei
    Dong, J. M.
    Zuo, W.
    Gu, J. Z.
    PHYSICS OF ATOMIC NUCLEI, 2018, 81 (03) : 283 - 287
  • [2] High-order isospin-dependent surface tension contribution to the fourth-order symmetry energy of finite nuclei
    Cai, Bao-Jun
    Wang, Rui
    Zhang, Zhen
    Chen, Lie-Wen
    PHYSICAL REVIEW C, 2022, 106 (04)
  • [3] The fourth-order symmetry energy of nuclear matter and symmetry energy coefficients of finite nuclei using extended semi-empirical mass formula
    Pal, M.
    Chakraborty, S.
    Sahoo, B.
    Sahoo, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2019, 28 (04):
  • [4] Energy in Fourth-Order Gravity
    Avalos, R.
    Lira, J. H.
    Marque, N.
    ANNALES HENRI POINCARE, 2025, 26 (02): : 597 - 673
  • [5] Nuclear matter fourth-order symmetry energy in the relativistic mean field models
    Cai, Bao-Jun
    Chen, Lie-Wen
    PHYSICAL REVIEW C, 2012, 85 (02):
  • [6] Fourth-order compact finite difference method for fourth-order nonlinear elliptic boundary value problems
    Wang, Yuan-Ming
    Guo, Ben-Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) : 76 - 97
  • [7] FINITE TIME BLOWUP FOR THE FOURTH-ORDER NLS
    Cho, Yonggeun
    Ozawa, Tohru
    Wang, Chengbo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 615 - 640
  • [8] Energy in Fourth-Order GravityEnergy in Fourth-Order GravityR. Avalos et al.
    R. Avalos
    J. H. Lira
    N. Marque
    Annales Henri Poincaré, 2025, 26 (2) : 597 - 673
  • [9] Nuclear matter fourth-order symmetry energy in nonrelativistic mean-field models
    Pu, Jie
    Zhang, Zhen
    Chen, Lie-Wen
    PHYSICAL REVIEW C, 2017, 96 (05)
  • [10] A positive energy theorem for fourth-order gravity
    Avalos, Rodrigo
    Laurain, Paul
    Lira, Jorge H.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)