Uniqueness in law for a class of degenerate diffusions with continuous covariance

被引:0
|
作者
Gerard Brunick
机构
[1] University of California,Department of Statistics and Applied Probability
来源
关键词
Martingale problem; Stochastic differential equations; Degenerate parabolic operators; Homogeneous groups; 60H10; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We study the martingale problem associated with the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Lu(s, x) = \partial_su(s, x) + \frac{1}{2} \sum_{i,j=1}^{d_0} a^{ij}(s, x) \partial_{ij}u(s, x) + \sum_{i,j=1}^d B^{ij} x^j \partial_iu(s, x), $$\end{document}where d0 ≤  d. We show that the martingale problem is well-posed when the function a is continuous and strictly positive definite on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{d_0}}$$\end{document} and the matrix B takes a particular lower-diagonal, block form. We then localize this result to show that the martingale problem remains well-posed when B is replaced by a sufficiently smooth vector field whose Jacobian matrix satisfies a nondegeneracy condition.
引用
收藏
页码:265 / 302
页数:37
相关论文
共 50 条