Deformation of Delone Dynamical Systems and Pure Point Diffraction

被引:0
|
作者
Michael Baake
Daniel Lenz
机构
[1] Fakultät für Mathematik,
[2] Universität Bielefeld,undefined
[3] Postfach 100131,undefined
[4] 33501 Bielefeld,undefined
[5] Fakultät für Mathematik,undefined
[6] TU Chemnitz,undefined
[7] 09107 Chemnitz,undefined
关键词
Differential Equation; Dynamical System; Partial Differential Equation; Abelian Group; Fourier Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with certain dynamical systems built from point sets and, more generally, measures on locally compact Abelian groups. These systems arise in the study of quasicrystals and aperiodic order, and important subclasses of them exhibit pure point diffraction spectra. We discuss the relevant framework and recall fundamental results and examples. In particular, we show that pure point diffraction is stable under “equivariant” local perturbations and discuss various examples, including deformed model sets. A key step in the proof of stability consists in transforming the problem into a question on factors of dynamical systems.
引用
收藏
页码:125 / 150
页数:25
相关论文
共 50 条
  • [1] Deformation of delone dynamieal systems and pure point diffraction
    Baake, M
    Lenz, D
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (02) : 125 - 150
  • [2] Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra
    Baake, M
    Lenz, D
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1867 - 1893
  • [3] Pure point dynamical and diffraction spectra
    Lee, JY
    Moody, RV
    Solomyak, B
    [J]. ANNALES HENRI POINCARE, 2002, 3 (05): : 1003 - 1018
  • [4] Pure Point Dynamical and Diffraction Spectra
    J.-Y. Lee
    R. V. Moody
    B. Solomyak
    [J]. Annales Henri Poincaré, 2002, 3 : 1003 - 1018
  • [5] Delone Sets and Dynamical Systems
    Solomyak, Boris
    [J]. SUBSTITUTION AND TILING DYNAMICS: INTRODUCTION TO SELF-INDUCING STRUCTURES, 2020, 2273 : 1 - 32
  • [6] Equicontinuous Delone Dynamical Systems
    Kellendonk, Johannes
    Lenz, Daniel
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (01): : 149 - 170
  • [7] Pure Point Diffraction Implies Zero Entropy for Delone Sets with Uniform Cluster Frequencies
    Michael Baake
    Daniel Lenz
    Christoph Richard
    [J]. Letters in Mathematical Physics, 2007, 82 : 61 - 77
  • [8] Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies
    Baake, Michael
    Lenz, Daniel
    Richard, Christoph
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2007, 82 (01) : 61 - 77
  • [9] Delone dynamical systems and spectral convergence
    Beckus, Siegfried
    Pogorzelski, Felix
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (06) : 1510 - 1544
  • [10] Planar Dynamical Systems with Pure Lebesgue Diffraction Spectrum
    Baake, Michael
    Ward, Tom
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (01) : 90 - 102