The Influence of Thermal Expansion and Mass Loss on the Young’s Modulus of Ceramics During Firing

被引:0
|
作者
Igor Štubňa
Anton Trník
Rudolf Podoba
Ján Ondruška
Libor Vozár
机构
[1] Constantine the Philosopher University,Department of Physics, Faculty of Natural Sciences
[2] Czech Technical University,Department of Materials Engineering and Chemistry, Faculty of Civil Engineering
[3] Slovak University of Technology,Department of Physics, Faculty of Civil Engineering
来源
关键词
Ceramics; Elevated temperatures; Resonant method ; Young’s modulus;
D O I
暂无
中图分类号
学科分类号
摘要
During the heating stage of the firing of a ceramic material, the mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}, length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document}, and diameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} of the sample alter their values depending on the temperature \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}. Young’s modulus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(f,m,l,d)$$\end{document} measured by a sonic resonance method is also a function of the resonance frequency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. Therefore, three thermal analyses (TGA, TDA, modulated force TMA) must be performed to obtain correct values of Young’s modulus. The calculation of Young’s modulus can be simplified if TGA and/or TDA are omitted. This necessarily leads to partly incorrect results. If TGA is not performed, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E[f(t),m_0 ,l(t),d(t)]$$\end{document} and the relative difference \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\{E[f(t),m(t),l(t),d(t)]-E[f(t),m_0 ,l(t),d(t)]\}/E[f(t),m(t),l(t),d(t)])$$\end{document} reaches 7 % for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t> 650\,^\circ \text{ C}$$\end{document} and less than 2 % for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t< 500\,^\circ \text{ C}$$\end{document}. If TDA is not performed, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E[f(t),m(t),l_0 ,d_0 ]$$\end{document} and the relative difference (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{E[f(t),m(t),l(t),d(t)]-E[f(t),m(t),l_0 ,d_0 ]\}/E[f(t),m(t),l(t),d(t)])$$\end{document} is less than 0.6 % for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t < 1000\,^\circ \text{ C}$$\end{document}. For the simplest case, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E[f(t),m_0 ,l_0 ,d_0 ]$$\end{document} and the relative difference (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{E[f(t),m(t),l(t),d(t)]-E[f(t),m_0 ,l_0 ,d_0 ]\}/E[f(t),m(t),l(t),d(t)])$$\end{document} is 7.5 % for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t > 600\,^\circ \text{ C}$$\end{document} and less than 2 % for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<500\,^\circ \text{ C}$$\end{document}.
引用
收藏
页码:1879 / 1887
页数:8
相关论文
共 50 条
  • [1] The Influence of Thermal Expansion and Mass Loss on the Young's Modulus of Ceramics During Firing
    Stubna, Igor
    Trnik, Anton
    Podoba, Rudolf
    Ondruka, Jan
    Vozar, Libor
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2014, 35 (9-10) : 1879 - 1887
  • [2] Young's modulus of heatproof tile ceramics Letovice during firing
    Trnik, Anton
    Stubna, Igor
    Varga, Gabriel
    Bacik, Peter
    Podoba, Rudolf
    [J]. JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2011, 119 (1392) : 645 - 649
  • [3] Young's modulus and thermal expansion of tensioned graphene membranes
    Storch, Isaac R.
    De Alba, Roberto
    Adiga, Vivekananda P.
    Abhilash, T. S.
    Barton, Robert A.
    Craighead, Harold G.
    Parpia, Jeevak M.
    McEuen, Paul L.
    [J]. PHYSICAL REVIEW B, 2018, 98 (08)
  • [4] Young's modulus of kaolinite-illite mixtures during firing
    Hulan, Tomas
    Stubna, Igor
    [J]. APPLIED CLAY SCIENCE, 2020, 190
  • [5] Young's modulus evolution during sintering and thermal cycling of pure tin oxide ceramics
    Simonova, Petra
    Gregorova, Eva
    Pabst, Willi
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (15) : 7816 - 7827
  • [6] Young's Modulus of Alumina Ceramics During Isothermal Heating
    Trnik, Anton
    Medved', Igor
    Stubna, Igor
    [J]. 22ND INTERNATIONAL MEETING OF THERMOPHYSICS 2017 AND 4TH MEETING OF ENRE 2017 (THERMOPHYSICS 2017), 2017, 1866
  • [7] Influence of Firing Temperature and Compacting Pressure on Density and Young's Modulus of Electroporcelain
    Al-Shantir, Omar
    Trnik, Anton
    Csaki, Stefan
    [J]. THERMOPHYSICS 2018, 2018, 1988
  • [8] Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics
    Asmani, M
    Kermel, C
    Leriche, A
    Ourak, M
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (08) : 1081 - 1086
  • [10] Young's Modulus of Different Illitic Clays during Heating and Cooling Stage of Firing
    Hulan, Tomas
    Stubna, Igor
    Ondruska, Jan
    Csaki, Stefan
    Lukac, Frantisek
    Manik, Marek
    Vozar, Libor
    Ozolins, Jurijs
    Kaljuvee, Tiit
    Trnik, Anton
    [J]. MATERIALS, 2020, 13 (21) : 1 - 14